Synthesis and characterization of 2,4,6-trihydroxy benzophenone and its activity as sunscreen
DOI:
https://doi.org/10.29303/aca.v8i1.175Keywords:
Synthesis, Sunscreen, 2,4,6-Trihidroxy benzophenone, SPFAbstract
Benzophenone was synthesized through a condensation reaction of benzoic acid and phloroglucinol with an Eaton reagent as a catalyst. The percentage of the product was 60%, and it was characterized using FTIR and 1H-NMR. The sunscreen activity was carried out using a UV-Vis spectrophotometer to calculate the SPF value. The synthesis result was made in several concentration variations: 100, 150, 200, 250, and 300 ppm to measure the SPF values. The results showed that the SPF values were 9.89, 13.39, 17.83, 23.77, and 28.26, respectively. Based on this, it can be concluded that these compounds have biological activity as sunscreen and samples of 200-300 ppm are included in the ultra-category as sunscreen.
Downloads
Metrics
References
Liao C., & Kannan K. (2014). Widespread Occurrence of Benzophenone-Type UV Lightfilters in Personal Care Products from China and The United States: An Assessment of Human Exposure. Environ Sci Technol, 48(7), 4103–9. doi: 10.1021/es405450n
Imamović, B., Trebše, P., Omeragić, E., Bečić, E., Pečet, A., & Dedić, M. (2022). Stability and removal of benzophenone-type UV filters from water matrices by advanced oxidation processes. Molecules, 27(6), 1874.
Carstensen, L., Zippel, R., Fiskal, R., Börnick, H., Schmalz, V., Schubert, S., Stolte, S. (2023). Trace analysis of benzophenone-type UV filters in water and their effects on human estrogen and androgen receptors. Journal of Hazardous materials, 456, 131617.
Hrabáková, K., Hložek, T., Bosáková, Z., & Tůma, P. (2024). Hydrophobic eutectic solvents for surface water treatment with a focus on benzophenone type UV filters. Ecotoxicology and Environmental Safety, 280, 116528.
Kunisue, T., Chen, Z., Louis, G. M. B., Sundaram, R., Hediger, M. L., Sun, L., & Kannan, K. (2012). Urinary concentrations of benzophenone-type UV filters in U.S. Women and Their Association with Endometriosis. Environ. Sci. Technol, 46: 4624–4632. doi: 10.1021/es204415a
Gavrila, A. A., Dasteridis, I. S., Tzimas, A. A., Chatzimitakos, T. G., & Stalikas, C. D. (2023). Benzophenones in the environment: occurrence, fate and sample preparation in the analysis. Molecules, 28(3), 1229.
Tarazona I., Chisvert A., León Z., & Salvador A. (2010). Determination of Hydroxylated Benzophenone UV Filters in Sea Water Samples by Dispersive Liquid-liquid Microextraction Followed by Gas Chromatography-Mass Spectrometry. J Chromatogr A, 1217(29), 4771-8. doi: 10.1016/j.chroma.2010.05.047
Carrao, A. M., Coleman II, J. C., & Kumari, H. (2021). Benzophenone-3 and ethylhexyl methoxycinnamate UV filters in freshwater environments: a Laurentian Great Lakes data needs analysis for assessing environmental risk. Environmental Advances, 5, 100110.
Fent, K., Kunz, P. Y., Zenker, A., & Rapp, M. (2010). A Tentative Environmental Risk Assessment of The UV-filters 3-(4-Methylbenzylidene-Camphor),2-Ethyl-Hexyl-4-Trimethoxycinnamate, Benzophenone-3, Benzophenone-4 and 3-Benzylidene Camphor. Mar. Environ. Res. (69 Suppl), S4–S6. doi: 10.1016/j.marenvres.2009.10.010
Han, J., Qin, Z. T., Zhang, J., Wang, W. Q., Wu, J. Y., Lu, Y. Z., & Sun, L. W. (2021). Acute toxicity and ecological risk assessment of 4, 4’-dihydroxybenzophenone, 2, 4, 4’-trihydroxybenzophenone and 4-MBC in ultraviolet (UV)-filters. PLoS One, 16(4), e0249915.
Ogata, Y., Tezua, H., & Kamei, T. (1969). Kinetics of The Nitric Acid Oxidation of Diphenylmethane to Benzophenone. The Journal of Organic Chemistry, 9.4 (4), 845-847. doi: 10.1021/jo01256a014
Azeez, M. O., Nafiu, S. A., Olarewaju, T. A., Olabintan, A. B., Tanimu, A., Gambo, Y., & Aitani, A. (2023). Selective catalytic oxidation of ethylbenzene to acetophenone: a review of catalyst systems and reaction mechanisms. Industrial & Engineering Chemistry Research, 62(33), 12795-12828.
Wiberg, K.B. & Evans, R.J. (1960). The Kinetics of The Chromic Acid Oxidation of Diphenylmethane. Tetrahedron,8,313-315.doi: 10.1021/ja01545a032.
Liu, Y., Pu, S., Sun, C., Kai, G., Yu, Y., & Li, H. (2025). Transition-metal free chemoselective C–H hydroxylation of bisarylmethanes enabled by a phosphite as a sacrificial reductant. Organic & Biomolecular Chemistry, 23(19), 4628-4635.
Gopalan, R., & Sugumar, R.W. (1978) Kinetics of Oxidation of Diphenylmethane by Pottasium Permanganate. Indian Journal Chemistry 16A, 198-200. ID: 201002024775755031
Wu, N., Cao, W., Qu, R., Wang, Z., Allam, A. A., Ajarem, J. S., ... & Huo, Z. (2023). Synergistic effects of permanganate and chlorination on the degradation of Benzophenone-3: Kinetics, mechanisms and toxicity evaluation. Separation and Purification Technology, 322, 124194.
Qi-meng, R., & Jia-you, S. (2004). Fries Rearrangement: A New, practical synthesis of 4,4’-dihydroxybenzophenone (I), 30 Oktober 2004
Maly, K. E. (2022). Synthesis of Aromatic Compounds. Walter de Gruyter GmbH & Co KG.
Zhou, B., Liao, X., Liu, S., Gao, G., Gao, Y., Gan, W., ... & Lin, Y. (2024). Synthesis, biological evaluation, network pharmacology, and molecular docking of benzophenone as antitumor agents. Journal of Molecular Structure, 1312, 138467.
Jansen-van Vuuren, R. D., Liu, S., Miah, M. J., Cerkovnik, J., Košmrlj, J., & Snieckus, V. (2024). The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chemical reviews, 124(12), 7731-7828.
Murray, B. J., Boulton, L. T., & Standford, G. (2021). HFO-1234yf as a CF3-building Block: Synthesis of Trifluoromethyl-Benzophenone Derivatives by Deoxygenative Aromatisation. Journal of Fluorine Chemistry, 245: 109774. doi: 10.1016/j.jfluchem.2021.109774
Yang, B., Hou, M., & Gao, S. (2025). Total Synthesis of Polycyclic Natural Products via Photoenolization/Diels–Alder Reaction. Accounts of Chemical Research, 58(8), 1308-1322.
Karunakaran, J., Qiu, H., & Balaraman, E. (2021). Synthesis of diverse heterocyclic frameworks using cyclopentadienones via the Diels–Alder strategy. Organic Chemistry Frontiers, 8(20), 5608-5650.
Kornilov, D. A., Kornilova, A. A., Shulyatiev, A. A., Anikin, O. V., & Mustafin, A. G. (2023). High pressure, temperature, and solvent effect on the Diels–Alder cycloaddition reaction between thiobenzophenone and cyclopentadiene. International Journal of Chemical Kinetics, 55(12), 776-784.
Rammohan, A., Krinochkin, A. P., Khasanov, A. F., Kopchuk, D. S., & Zyryanov, G. V. (2022). Sustainable solvent-free Diels–Alder approaches in the development of constructive heterocycles and functionalized materials: a review. Topics in Current Chemistry, 380(5), 43.
Akhrem, I. S., Afanas’eva, L. V., Avetisyan, D. V., Artyushin, O. I., & Kagramanov, N. D. (2020). An Expedient One-Pot Synthesis of Benzophenone Schiff Bases from Benzene. Mendeleev Communications, 30(2), 238-240.
Ahmad, S., Akhtar, R., & Zahoor, A. F. (2022). Comprehensive Account on the Synthesis of (-)-Balanol and its Analogues. Current Organic Synthesis, 19(1), 56-85.
Maly, K. E. (2022). Synthesis of Aromatic Compounds. Walter de Gruyter GmbH & Co KG.
Al Faruk, M. (2022). Synthetic Approaches towards [4] Triangulene (Doctoral dissertation, University of New Hampshire).
Bica, K., Leder, S., & Gaertner, P. (2011). From Solvent to Sustainable Catalysis-Chloroferrate Ionic Liquids in Synthesis. Current Organic Synthesis, 8(6), 824-839.
Wu, M., Xie, D., Xu, G., Sun, R., Xia, X., Liu, W., & Tang, L. (2017) Benzophenone-Type UV Filters in Surface Waters: an Assessment of Profiles and Ecological Risks in Shanghai, China, Ecotoxicology and Environmental Safety, 141(1), 235-241. doi: 10.1016/j.ecoenv.2017.03.013
Fuganti, C., & Serra, S. (2000). Baker’s yeast-mediated enantioselective synthesis of the bisabolane sesquiterpenes (+)-curcuphenol,(+)-xanthorrhizol,(−)-curcuquinone and (+)-curcuhydroquinone. Journal of the Chemical Society, Perkin Transactions 1, (22), 3758-3764.
Yadav, D., Joshi, R. J., Sharma, S. K., & Menon, R. S. (2020). Regioselective Synthesis of Arylsulfonyl Benzophenones via Aerobic Oxidative [3+3] Benzannulation Reactions. European Journal of Organic Chemistry. doi: 10.1002/ejoc.202000931
Mushtaq, A., Zahoor, A. F., Bilal, M., Hussain, S. M., Irfan, M., Akhtar, R., ... & Mojzych, M. (2023). Sharpless asymmetric dihydroxylation: an impressive gadget for the synthesis of natural products: a review. Molecules, 28(6), 2722.
Tian, T., Li, Z., & Li, C. J. (2021). Cross-dehydrogenative coupling: a sustainable reaction for C–C bond formations. Green Chemistry, 23(18), 6789-6862.
Walthew, J. M. (1964). Phenolic Intermediates in Synthesis. The University of Manchester (United Kingdom).
Sankar, R., Vijayalakshmi, S., Rajagopan, S., & Kaliyappan, T. (2010). Synthesis, spectral, thermal, and chelation potentials of polymeric hydrazone based on 2, 4‐dihydroxy benzophenone. Journal of Applied Polymer Science, 117(4), 2146-2152.
Doriguetto, A. C., Martins, F. T., Ellena, J., Salloum, R., dos Santos, M. H., Moreira, M. E., ... & Nagem, T. J. (2007). 2, 2′, 4‐Trihydroxybenzophenone: Crystal Structure, and Anti‐Inflammatory and Antioxidant Activities. Chemistry & Biodiversity, 4(3), 488-499.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Emmy Yuanita, Ainni Rohmana, Maria Ulfa, Baiq Nila Sari Ningsih, Sudirman Sudirman, Ni Komang Tri Dharmayani, Ima Arum Lestarini, Baiq Desy Ratnasari

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with ACA: Acta Chimica Asiana agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in ACA: Acta Chimica Asiana.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).