Molecular docking study of mutant levansucrase (E342A) from Bacillus subtilis as a receptor for D-glucopyranose and β-D-fructofuranose ligands
Molecular docking study of mutant levansucrase
Authors
Diah Miftahul Aini , Firda Ade Irmayanti , Emmy Yuanita , Maulida Septiyana , Baiq Desy RatnasariDOI:
10.29303/aca.v8i2.262Published:
2025-11-28Issue:
Vol. 8 No. 2 (2025)Keywords:
levansucrase, molecular docking, 1PT2, receptor, ligandArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
Molecular docking is a widely applied computational approach for predicting the binding modes of small-molecule ligands within the active site of a target protein. This research investigated the interactions of mutant levansucrase E342A from Bacillus subtilis (PDB ID: 1PT2) for β-D-fructofuranose and D-glucopyranose ligands. Using AutoDock Vina, the docking results indicated that β-D-fructofuranose exhibited a higher binding energy of –5.6 kcal/mol, compared to D-glucopyranose with a value of –5.4 kcal/mol, suggesting a more stable interaction. It was supported by the binding interaction analysis of β-D-fructofuranose, which established five hydrogen bonds, including direct interactions with the key catalytic residues Asp86 (2.76 Å) and Asp247 (2.64 Å) that are essential for the enzymatic reaction. In contrast, D-glucopyranose formed four hydrogen bonds, involving Arg360 (3.07 Å) and Glu340 (2.64 Å), with most residues contributing to structural stabilization rather than direct catalysis. These results confirm that β-D-fructofuranose plays a crucial role as a determinant of levansucrase activity in the biosynthesis of levan-type FOS, which are known to exhibit strong prebiotic activity.
References
Cicchi, C., Pazzagli, L., Paoli, P., Campigli, S., Marchi, G., Cardona, F., Clemente, F., Pavone, S., Ferraroni, M., Canovai, A., Matassini, C., dan Luti, S. (2025). Molecular Basis of Pseudomonas syringae pv actinidiae Levansucrase Inhibition by a Multivalent Iminosugar. Journal of Agricultural and Food Chemistry, 73(1), 15981-15992.
Ahmad, W., Nasir, A., Prakash, S., Hayat, A., Rehman, M. U., Khaliq, S., Akhtar, K., Anwar, M. A., & Munawar, N. (2025). In vitro and in vivo interventions reveal the health benefits of levan-type exopolysaccharide produced by a fish gut isolate Lactobacillus reuteri FW2. Life, 15(1), 89.
Charoenwongpaiboon T., Klaewkla M., Chunsrivirot S., Wangpaiboon K., Pichyangkura R., Field R.A., and Prousoontorn M.H. (2019). Rational re-design of Lactobacillus reuteri 121 inulosucrase for product chain length control. RSC Advances, 9(14957), 14957–14965.
Cheng, R., Cheng, L., Zhao, Y., Wang, L., Wang, S., & Zhang, J. (2021). Biosynthesis and prebiotic activity of a linear levan from a new Paenibacillus isolate. Applied Microbiology and Biotechnology, 105(2), 769–787.
Aini, D. M., & Balqis, S. (2025). Halophilic Bacteria as Promising Biocatalyst Producers: A Review on Enzyme Production. Jurnal Biologi Tropis, 25(2), 2178-2186.
Meng, G., & Fütterer, K. (2003). Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nature Structural & Molecular Biology, 10(11), 935-941.
Strube, C. P., Homann, A., Gamer, M., Jahn, D., Seibel, J., & Heinz, D. W. (2011). Polysaccharide synthesis of the levansucrase SacB from Bacillus megaterium is controlled by distinct surface motifs. Journal of Biological Chemistry, 286(20), 17593-17600.
Wuerges, J., Caputi, L., Cianci, M., Boivin, S., Meijers, R., & Benini, S. (2015). The crystal structure of Erwinia amylovora levansucrase provides a snapshot of the products of sucrose hydrolysis trapped into the active site. Journal of Structural Biology, 191(3), 290–298.
Polsinelli, I., Caliandro, R., Demitri, N., & Benini, S. (2020). The structure of sucrose-soaked levansucrase crystals from Erwinia tasmaniensis reveals a binding pocket for levanbiose. International Journal of Molecular Sciences, 21(1), 83.
Martínez-Fleites, C., Ortíz-Lombardía, M., Pons, T., Tarbouriech, N., Taylor, E. J., Arrieta, J. G., Hernández, L., & Davies, G. J. (2005). Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. Biochemical Journal, 390(1), 19–27.
Xu, W., Ni, D., Hou, X., Pijning, T., Guskov, A., Rao, Y., & Mu, W. (2022). Crystal structure of levansucrase from the gram-negative bacterium Brenneria provides insights into its product size specificity. Journal of Agricultural and Food Chemistry, 70(16), 5095-5105.
Mardo, K., Visnapuu, T., Vija, H., Elmi, T., & Alamae, T. (2013). Mutational analysis of conserved regions harboring catalytic triad residues of the levansucrase protein encoded by the lsc-3 gene (lsc3) of Pseudomonas syringae pv. tomato DC3000. Biotechnology and Applied Biochemistry, 61(1), 11-22.
Yanase, H., Maeda, M., Hagiwara, E., Yagi, H., Taniguchi, K., & Okamoto, K. (2002). Identification of functionally important amino acid residues in Zymomonas mobilis levansucrase. J Biochem, 132(4), 565-72.
Pinzi, L., & Rastelli, G. (2019). Molecular Docking: Shifting Paradigms in Drug Discovery. International Journal of Molecular Sciences, 20(18), 1-23.
Fan, J., Fu, A., & Zhang, L. (2019). Progress in Molecular Docking. Quantitative Biology, 7(2), 83–89.
Putri, T. Z. A. D., Findrayani, R. P., Isrul, M., & Lolok, N. (2024). Studi Molecular Docking Senyawa Kimia Dari Herba Putri Malu (Mimosa pudica) Terhadap Inhibisi Enzim A-Glukosidase Sebagai Antidiabetes Melitus. Jurnal Pharmacia Mandala Waluya, 3(4), 225-233.
Pradani, T. C., Manampiring, A. E., Kepel, B. J., Budiarso, F. D., & Bodhi, W. (2021). Molecular Docking Terhadap Senyawa Kurkumin dan Arturmeron pada Tumbuhan Kunyit (Curcuma Longa Linn.) yang Berpotensi Menghambat Virus Corona. eBiomedik, 9(2), 208-214.
Farid, M., Al Madury, S., Muslim, A. S., & Qurrotul‘Aini, Z. (2025). Molecular docking study of catharanthus roseus compounds as potential ABL1 inhibitors for leukemia treatment. Acta Chimica Asiana, 8(1), 564-573.
Yuanita, E., Lestarini, I. A., Dharmayani, N. K. T., Ningsih, B. N. S., Septiyana, M., Ulfa, M., Sudirman., & Sugara, T. H. (2025). Sulfonated Hydroxyxanthone as Anti-Tuberculosis Agent: One-Step Sequence Synthesis, Characterization, And Molecular Docking Preevaluation. Jordan Journal of Pharmaceutical Sciences, 18(2), 305–316.
Aziz, A., Andrianto, D., & Safithri, M. (2022). Molecular Docking of Bioactive Compounds from Wungu Leaves (Graptophyllum pictum (L) Griff) as Tyrosinase Inhibitors. Indonesian Journal of Pharmaceutical Science and Technology, 9(2), 96-107.
Rastini, M. B. O., Giantari, N. K. M., Adnyani, K. D., & Laksmiani, N. P. L. (2019). Molecular docking aktivitas antikanker dari kuersetin terhadap kanker payudara secara in silico. Jurnal Kimia, 1(1), 180-184.
Chairunisa, F., Safithri, M., Andrianto, D., Kurniasih, R., & Irsal, R. A. P. (2023). Molecular docking of red betel leaf bioactive compounds (Piper crocatum) as lipoxygenase inhibitor. Indonesian Journal of Pharmaceutical Science and Technology, 10(2), 90-103.
Sari, I. W., Junaidin, J., & Pratiwi, D. (2020). Studi Molecular Docking Senyawa Flavonoid Herba Kumis Kucing (Orthosiphon stamineus B.) Pada Reseptor Α-Glukosidase Sebagai Antidiabetes Tipe 2. Jurnal Farmagazine, 7(2), 54.
Kenyori, I. K., Alamsyah, M.S., & Nurjanah, I. A. (2022). Studi In Silico Senyawa Bioaktif Kuersetin Kulit Jeruk Nipis (Citrus aurantifolia) sebagai Agen Antikanker Payudara. BIMFI, 9(1), 1-10.
License
Copyright (c) 2025 Diah Miftahul Aini, Firda Ade Irmayanti, Emmy Yuanita, Maulida Septiyana, Baiq Desy Ratnasari

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with ACA: Acta Chimica Asiana agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in ACA: Acta Chimica Asiana.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Indonesian Chemical Society, Chapter Nusa Tenggara. Jalan Majapahit 62 Mataram, University of Mataram, 83125, Indonesia
