Synthesis and characterization of bacterial cellulose composite with graphite and TiO2-ZnO: structural and functional analysis

Authors

  • Muhammad Fariz Nafiir Chemistry Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram-NTB, 83125 Indonesia
  • Sudirman Chemistry Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram-NTB, 83125 Indonesia
  • Emmy Yuanita Chemistry Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram-NTB, 83125 Indonesia
  • Sazmal E. Arshad Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • Retno Ariadi Lusiana Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, 50275 Semarang, Indonesia
  • Maria Ulfa Universitas Mataram

DOI:

https://doi.org/10.29303/aca.v7i2.204

Keywords:

bacterial cellulose, graphite, TiO2-ZnO, composite, FTIR, SEM-EDS, conductivity, mechanical properties, swelling

Abstract

This research aims to synthesize and characterize a bacterial cellulose (BC)-based composite with graphite and TiO2-ZnO as reinforcement materials using ex-situ synthesis with CTAB as a surfactant. FTIR and SEM-EDS analysis revealed interactions between the matrix and the reinforcement materials, as well as irregular particle distribution in the BC/G-TiO2-ZnO composite. The addition of graphite to BC significantly increased the conductivity of the composite, while the addition of TiO2-ZnO had the opposite effect. The mechanical properties of the composite exhibited an inverse relationship with the conductivity parameter. Swelling tests indicated that pH and the addition of CTAB influenced the swelling behavior of the BC-based composite. The results of this study provide a strong foundation for the development of potential applications in the fields of electronics and pollutant filtration. The synthesis of this composite aims to harness the unique properties of BC, graphite, and TiO2-ZnO, creating a multifunctional material with potential uses in flexible electronics, sensors, biocompatible conductive materials, and advanced filtration systems.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Blomquist, N., Engstrom, A. C., Hummelgard, M., Andres, B., Forsberg, S., & Olin, H. (2016). Large-Scale Production of Nanographite by Tube-Shear Exfoliation in Water. Plos One, 1(1), 1-11.

Ulfa, M., Noviani, I., Yuanita, E., Dharmayani, N. K. T., Sudirman, & Sarkono. (2023). Synthesis and Characterization of Composites-Based Bacterial Cellulose by Ex-Situ Method as Separator Battery. Jurnal Penelitian Pendidikan IPA, 9(6), 4647-4651.

Choi, S. M., Rao, K. M., Zo, S. M., Shin, E. J., & Han, S. S. (2022). Bacterial Cellulose and Its Applications. Polymers, 14(1080), 1-44.

Zhong, C. (2020). Industrial-Scale Production and Applications of Bacterial Cellulose. Frontiers in Bioengineering and Biotechnology, 8(605374), 1-19.

Gregory, D. A., Tripathi, L., Fricker, A. T., Asare, E., Orlando, I., Raghavendran, V., & Roy, I. (2021). Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science and Engineering: R: Reports, 145, 100623.

Vilela, C., Pinto, R. J. B., Pinto, S., Marques, P., Silvestre, A., & Barros, C. S. D. R. F. (2018). Polysaccharide-based hybrid materials: metals and metal oxides, graphene, and carbon nanotubes. Springer.

Bodzek, M., Konieczny, K., & Kwiecińska-Mydlak, A. (2020). The application of nanomaterial adsorbents for the removal of impurities from water and wastewaters: a review. Desalination and Water Treatment, 185, 1-26.

Wahid, F., Zhao, X. Q., Cui, J. X., Wang, Y. Y., Wang, F. P., Jia, S. R., & Zhong, C. (2022). Fabrication of Bacterial Cellulose with TiO2-ZnO Nanocomposites as a Multifunctional Membrane for Water Remediation. Journal of Colloid and Interface Science, 620(1), 1-13.

Jayanthi, S., Shenbagavalli, S., Muthuvinayagam, M., & Sundaresan, B. (2022). Effect of Nano TiO2 on The Transport, Structural and Thermal Properties of PEMA-NaI solid polymer electrolytes for Energy storage devices. Material Science Engineering: B, 285, 115942.

Ul-Islam, M., Khattak, W. A., Ullah, M. W., Khan, S., & Park, J. K. (2014) Synthesis of Regenerated Bacterial Cellulosa-Zinc Oxide Nanocomposite Films for Biomedical Applications. Cellulose, 21(1), 433-447.

Ramadhika, L. N., Aprilia, A., & Safriani, L. (2021). Studi Preparasi Senyawa ZnO: TiO2 Sebagai Material Fotokatalis. Jurnal Material dan Energi Indonesia, 11(2), 83-95.

Aritonang, H. F., Wulandari, R., & Wuntu, A. D. (2020). Synthesis and Characterization of Bacterial Cellulose/Nano-Graphite Nanocomposite Membranes. Macromolecular Symposia, 391(1900145), 1-7.

Al-arjan, W. S., Khan, M. U. A., Almutairi, H. H., Alharbi, S. M., & Razak, S. I. A. (2022). pH-Responsive PVA/BC-f-GO Dressing Material for Burn and Chronic Wound Healing with Curcumin Release Kinetics. Polymers, 14(1949), 1-16.

Susilo, B. D., Suryanto, H., & Aminuddin. (2021) Characterization of Bacterial Nanocellulose–Graphite Nanoplatelets Composite Films. Journal of Mechanical Engineering Science and Technology, 5(2), 145-154.

Feng, Y., Zhang, X., Shen, Y., Yoshino, K., & Feng, W. (2012). A mechanically strong, flexible, conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydrate polymers, 87(1), 644-649.

Zhu, C., Li, F., Zhou, X., Lin, L., & Zhang, T. (2014). Kombucha‐synthesized bacterial cellulose: Preparation, characterization, and biocompatibility evaluation. Journal of Biomedical Materials Research Part A, 102(5), 1548-1557.

Czaja, W., Romanovicz, D., & Brown Jr, R. M. (2004). Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, 11(4), 403-411.

Ybañez, M. G., & Camacho, D. H. (2021). Designing hydrophobic bacterial cellulose film composites assisted by sound waves. RSC advances, 11(52), 32873-32883.

Mubari, P. K., Beguerie, T., Monthioux, M., Weiss-Hortala, E., Nzihou, A., & Puech, P. (2022). The X-ray, Raman, and TEM signatures of cellulose-derived carbons explained. C, 8(1), 4.

Annu, Bhat, Z. I., Imtiyaz, K., Rizvi, M. M. A., Ikram, S., & Shin, D. K. (2023). Comparative Study of ZnO-and-TiO2-Nanoparticles-Functionalized Polyvinyl Alcohol/Chitosan Bionanocomposites for Multifunctional Biomedical Applications. Polymers, 15(16), 3477.

Ali, H. A., & Hameed, N. J. (2022). Preparation of cellulose acetate nanocomposite films based on TiO2-ZnO nanoparticles modification as food packaging applications. Journal of Applied Sciences and Nanotechnology, 2(3), 115-125.

Cazan, C., Enesca, A., & Andronic, L. (2021). Synergic effect of TiO2 filler on the mechanical properties of polymer nanocomposites. Polymers, 13(12), 2017.

Zhang, L., Yu, Y., Zheng, S., Zhong, L., & Xue, J. (2021). Preparation and properties of conductive bacterial cellulose-based graphene oxide-silver nanoparticles antibacterial dressing. Carbohydrate Polymers, 257, 117671.

Aditya, T., Allain, J. P., Jaramillo, C., & Restrepo, A. M. (2022). Surface modification of bacterial cellulose for biomedical applications. International journal of molecular sciences, 23(2), 610.

Ameh, T., Zarzosa, K., Dickinson, J., Braswell, W. E., & Sayes, C. M. (2023). Nanoparticle surface stabilizing agents influence antibacterial action. Frontiers in Microbiology, 14, 1119550.

synthesize and characterize a bacterial cellulose (BC)-based composite with graphite and TiO2-ZnO as reinforcement materials using ex-situ synthesis with CTAB as a surfactant.

Downloads

Published

2024-10-31

How to Cite

Fariz Nafiir, M., Sudirman, Yuanita, E. ., Arshad, S. E., Lusiana, R. A., & Ulfa, M. (2024). Synthesis and characterization of bacterial cellulose composite with graphite and TiO2-ZnO: structural and functional analysis. Acta Chimica Asiana, 7(2), 478–486. https://doi.org/10.29303/aca.v7i2.204

Issue

Section

Articles

Most read articles by the same author(s)