Tailoring AlGaN nanoalloys with transition metal dopants for enhanced energy storage: A DFT Study
Authors
Fatemeh MollaaminDOI:
10.29303/aca.v8i2.245Published:
2025-11-28Issue:
Vol. 8 No. 2 (2025)Keywords:
Hydrogen storage, aluminum gallium nitride, metal/metalloid elementsArticles
Downloads
How to Cite
Downloads
Abstract
The notable fragile signal intensity close to the parallel edge of the nanocluster sample might be owing to silicon or germanium binding induced non-spherical distribution of AlGaSiN or AlGaGeN heteroclusters. However, a considerable deviation exists from doping atoms of palladium or platinum as electron acceptors on the surface of AlGaPdN or AlGaPtN heteroclusters. Then, magnetic parameters exhibited the same tendency of shielding for palladium or platinum; however, a considerable deviation exists from doping atoms of palladium or platinum as electron acceptors on the surface of Pd–AlGaN or Pt–AlGaN hetero-clusters. Therefore, it can be considered that palladium or platinum atoms in the functionalized AlGaPdN or AlGaPtN might have more impressive sensitivity for accepting the electrons in the process of hydrogen adsorption. The advantages of platinum or palladium over aluminum gallium nitride include its higher electron and hole mobility, allowing platinum or palladium doping devices to operate at higher frequencies than silicon or germanium doping devices. As a matter of fact, it can be observed that doped heteroclusters of AlGaPdN or AlGaPtN might ameliorate the capability of AlGaN for energy storage.
References
M. L. Nakarmi, N. Nepal, J. Y. Lin and H. X. Jiang, Appl. Phys. Lett., 2009, 94, 091903.
K. B. Nam, J. Li, M. L. Nakarmi, J. Y. Lin and H. X. Jiang, Appl. Phys. Lett., 2002, 81, 1038–1040.
J. P. Zhang, X. Hu, Y. Bilenko, J. Deng, A. Lunev, M. S. Shur, R. Gaska, M. Shatalov, J. W. Yang and M. A. Khan, Appl. Phys. Lett., 2004, 85, 5532–5534.
Mollaamin, F. Monajjemi, M. Unraveling Hetero-Clusters of Indium Gallium Nitride and Its Alloys for Solar Cells Development: Structural and Characterization Study of Nitride-Based Semiconductors Using DFT Framework. Russ. J. Phys. Chem. B 19, 480–500 (2025).
T. Kinoshita, T. Obata, H. Yanagi and S.-I. Inoue, Appl. Phys. Lett., 2013, 102, 012105.
Z. Jun, T. Wu, W. Feng, Y. Weiyi, X. Hui, D. Jiangnan, F. Yanyan, W. Zhihao and C. Changqing, IEEE Photonics J., 2013, 5, 1600310.
Mollaamin, F. Monajjemi, M. Doping Effects in Ternary Aluminum Gallium Nitride Hetero-Cluster Towards High-Electron-Mobility Transistors for Hydrogen Sensing: A Density Functional Theory Study and Energy-Saving. Russ. J. Phys. Chem. B 19, 236–254 (2025). https://doi.org/10.1134/S199079312470168
Mollaamin, F. Monajjemi, M. Structural, Electromagnetic and Thermodynamic Analysis of Ion Pollutants Adsorption in Water by Gallium Nitride Nanomaterial: a Green Chemistry Application. Russ. J. Phys. Chem. B 18, 533–548 (2024). https://doi.org/10.1134/S199079312402012X
Sipan Yang, Jianchang Yan, Miao He, Kunhua Wen, Yanan Guo, Junxi Wang, Deping Xiong & Huan Yin, Influence of Silicon-Doping in n-AlGaN Layer on the Optical and Electrical Performance of Deep Ultraviolet Light-Emitting Diodes. Russ. J. Phys. Chem. 93, 2817–2823 (2019). https://doi.org/10.1134/S003602441913034X
R. Blasco, A. Ajay, E. Robin, C. Bougerol, K. Lorentz, L.C. Alves, I. Mouton, L. Amichi, A. Grenier and E.Monroy, J. Phys. D: Appl. Phys. 52, 125101, 2019. DOI: 10.1088/1361-6463/aafec2
Danhao WangXin LiuShi FangChen HuangYang KangHuabin YuZhongling LiuHaochen ZhangRan LongYujie XiongYangjian LinYang YueBinghui GeTien Khee NgBoon S. OoiZetian MiJr-Hau HeHaiding Sun, Pt/AlGaN Nanoarchitecture: Toward High Responsivity, Self-Powered Ultraviolet-Sensitive Photodetection. Nano Lett. 2021, 21, 1, 120–129. https://doi.org/10.1021/acs.nanolett.0c03357
Mollaamin, F. Anchoring of 2D layered materials of Ge5Si5O20 for (Li/Na/K)-(Rb/Cs) batteries towards Eco-friendly energy storage. BMC Chemistry 19, 233 (2025).
Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.
Mollaamin, F. Competitive Intracellular Hydrogen-Nanocarrier Among Aluminum, Carbon, or Silicon Implantation: a Novel Technology of Eco-Friendly Energy Storage using Research Density Functional Theory. Russ. J. Phys. Chem. B 18, 805–820 (2024). https://doi.org/10.1134/S1990793124700131
Arrigoni, M.; Madsen, G.K.H. Comparing the performance of LDA and GGA functionals in predicting the T lattice thermal conductivity of III-V semiconductor materials in the zincblende structure: The cases of AlAs and BAs. Comput. Mater. Sci. 2019, 156, 354–360.
Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. B, 1964, 136, B864-B871.
Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects.Phys. Rev., 1965, 140, A1133- A1138.
Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652.
Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789.
K. Kim; K. D. Jordan (1994). "Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer". J. Phys. Chem. 98 (40): 10089–10094. doi:10.1021/j100091a024.
Mollaamin, F. Investigating the Treatment of Transition Metals for Ameliorating the Ability of Boron Nitride for Gas Sensing & Removing: A Molecular Characterization by DFT Framework. Prot Met Phys Chem Surf 60, 1050–1063 (2024).
Mollaamin, F. Alkali Metals Doped on Tin-Silicon and Germanium-Silicon Oxides for Energy Storage in Hybrid Biofuel Cells: A First-Principles Study. Russ. J. Phys. Chem. B 19, 722–736 (2025). https://doi.org/10.1134/S1990793125700393
Mollaamin, F. Monajjemi, M. Adsorption ability of Ga5N10 nanomaterial for removing metal ions contamination from drinking water by DFT, Int J Quantum Chem, 2024, 124, e27348. https://doi.org/10.1002/qua.27348.
Mollaamin, F. Monajjemi, M. Molecular modelling framework of metal-organic clusters for conserving surfaces: Langmuir sorption through the TD-DFT/ONIOM approach. Molecular Simulation, 2023; 49(4): 365–376. https://doi.org/10.1080/08927022.2022.2159996.
Mollaamin, F. Monajjemi, M. Divulge of Hydrogen Energy Storage by Manganese Doped Nitrogen Nanocomposites of Aluminum, Gallium or Indium Nitrides: A First-Principles Study. Russ. J. Phys. Chem. B 19, 319–335 (2025). https://doi.org/10.1134/S199079312570006X
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016. 27.GaussView, Version 6.06.16, Dennington, Roy; Keith, Todd A.; Millam, John M. Semichem Inc., Shawnee Mission, KS, 2016.
Stefan Grimme, Jens Antony, Stephan Ehrlich, Helge Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010, 132(15):154104. doi: 10.1063/1.3382344.
Sohail, U.; Ullah, F.; Binti Zainal Arfan, N.H.; Abdul Hamid, M.H.S.; Mahmood, T.; Sheikh, N.S.; Ayub, K. Transition Metal Sensing with Nitrogenated Holey Graphene: A First-Principles Investigation. Molecules 2023, 28, 4060. https://doi.org/10.3390/molecules
H.L Schmider, A.D Becke, Chemical content of the kinetic energy density. Journal of Molecular Structure: THEOCHEM. 527(1–3), 51-61 (2000). https://doi.org/10.1016/S0166-1280(00)00477-2
T. Lu & F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). doi:10.1002/jcc.22885
T. Lu, A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 161, 082503 (2024). doi:10.1063/5.0216272
T. Lu & F. Chen, Meaning and Functional Form of the Electron Localization Function. Acta Phys. Chim. Sin. 27, 2786–2792(2011). doi:org/10.3866/PKU.WHXB20112786
V. Tsirelson and A. Stash, Analyzing experimental electron density with the localized-orbital locator. Acta Cryst. B58, 780-785 (2002). https://doi.org/10.1107/S0108768102012338
Trontelj, Z.; Pirnat, J.; Jazbinšek, V.; Lužnik, J.; Srčič, S.; Lavrič, Z.; Beguš, S.; Apih, T.; Žagar, V.; Seliger, J. Nuclear Quadrupole Resonance (NQR)—A Useful Spectroscopic Tool in Pharmacy for the Study of Polymorphism. Crystals 2020, 10, 450. https://doi.org/10.3390/cryst10060450.
Sciotto, R.; Ruiz Alvarado, I.A.; Schmidt, W.G. Substrate Doping and Defect Influence on P-Rich InP(001):H Surface Properties. Surfaces 2024, 7, 79-87. https://doi.org/10.3390/surfaces7010006.
Luo,J., Wang,C., Wang ,Z., Guo,Q., Yang,J., Rui Zhou, R., Matano,K., Oguchi,T., Ren, Z., NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3*, Chinese Physm, 2020, B 29, 067402. https://doi.org/10.1088/1674-1056/ab892d.
Young, Hugh A.; Freedman, Roger D. (2012). Sears and Zemansky's University Physics with Modern Physics (13th ed.). Boston: Addison-Wesley. p. 754.
License
Copyright (c) 2025 Fatemeh Mollaamin

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with ACA: Acta Chimica Asiana agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in ACA: Acta Chimica Asiana.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Indonesian Chemical Society, Chapter Nusa Tenggara. Jalan Majapahit 62 Mataram, University of Mataram, 83125, Indonesia
