Hydrothermal synthesis of crystalline Aluminium(III)-Tartrate: effect of tartrate type and molar ratio

Authors

  • Yuniar Ponco Prananto Department of Chemistry, Brawijaya University
  • Danar Purwonugroho Brawijaya University
  • M. Naufal Tsaqif Dzakwan Brawijaya University
  • Tutik Setianingsih Brawijaya University
  • Nidatul Syarifah Brawijaya University

DOI:

https://doi.org/10.29303/aca.v8i1.244

Keywords:

metal complex, mordent, crystalline material, precursor, mol ratio

Abstract

Aluminium(III)-tartrate (Al-T) complex is a compound that commonly used as mordent in textile dyeing. This complex is soluble in hot water; thus, information on the isolation of crystallised Al-T is limited. Isolation of crystallised Al-T is needed to gain a high purity complex for further application in the textile industry. This study aims to synthesize and isolate crystalline complex of Al-T. Hydrothermal method was used to obtain the targeted complex. Effects of tartrate precursor and Al(III):tartrate mol ratio in the synthesis of Al-T complex were also investigated. The synthesis was done at 150 °C for 24 hours in several Al(III):tartrate mol ratios (1:2, 2:1, and 2:3) using two different tartrate precursors, namely L-tartaric acid and KNa-tartrate. The synthesized complexes were identified by infrared spectroscopy and powder-XRD analyses, and then further characterised by UV Vis - DRS, DTA-TGA, and SEM. Experimental data shows that the mol ratio affects the precipitation of the Al-T complex, in which a white crystalline solid was only precipitated out from the 2:1 reaction by both tartrate precursors. Different tartrate precursors used in the synthesis may alter the crystallization and result in an Al-T complex with slightly different thermal decomposition profile, UV-Vis DRS spectra profile, and different yield due to the different nature of the tartrate precursor. This finding is expected to support the possibility of Al-T mass production as mordent in textile dyeing

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Danar Purwonugroho, Brawijaya University

Department of Chemistry

M. Naufal Tsaqif Dzakwan, Brawijaya University

Department of Chemistry

Tutik Setianingsih, Brawijaya University

Department of Chemistry

Nidatul Syarifah, Brawijaya University

Department of Chemistry

References

Jafar, N., Nurhawaisyah, S. R., Widodo, S., Chalik, C. A., & Wakila, M. H. (2023). Mineralogical Study of Bauxite of Kenco Area, Landak District, West Kalimantan Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 1134(1), 012025. https://doi.org/10.1088/1755-1315/1134/1/012025

Kementerian ESDM Indonesia. (2020). Booklet Tambang Bauksit 2020. https://www.esdm.go.id/id/booklet/booklet-tambang-bauksit-2020. Retrieved December 27, 2024.

Syarwani, A. & Prananto, Y. P. (2023). Literature Study on the Screening of Al-MOFs Porous Material for Dimethyl Ether (DME) Gas Purification. Jurnal Integrasi Proses, 12(2), 55-65. https://dx.doi.org/10.36055/jip.v12i2.17485

Joshi, J. N., Moran, C. M., Feininger, H. P., Dow, J. M., & Walton, K. S. (2019). Household Aluminum Products as Insoluble Precursors for Directed Growth of Metal–Organic Frameworks. Crystal Growth & Design, 19(9), 5097–5104.

Ding, M., Cai, X., & Jiang, H. L. (2019). Improving MOF Stability: Approaches and Applications. Chemical Science, 10(44), 10209-10230. DOI: 10.1039/C9SC03916C

Samanidou, V. F., & Deliyannni, E. A. (2020). Metal Organic Frameworks: Synthesis and Application. Molecules, 25, 960, 1. https://doi.org/10.3390/molecules25040960

Yusuf, V. F., Malek, N. I., & Kailasa, S. K. (2022). Review on Metal–Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega, 7(49), 44507–44531. https://doi.org/10.1021/acsomega.2c05310

Majumder, M., Choudhary, R. B., Thakur, A. K., Khodayari, A., Amiri, M., Boukherroub, R., & Szunerits, S. (2020). Aluminum based Metal-Organic Framework Integrated with Reduced Graphene Oxide for Improved Supercapacitive Performance. Electrochimica Acta, 353, 136609. https://doi.org/10.1016/j.electacta.2020.136609

Bansal, P., Mishra, D., Vijayakumar, A., & Chatterjee, S. (2023). Aluminium Terephthalate (Al-BDC) based Metal Organic Framework Decorated Carboxymethylated Filter Cloth For Defluoridation Application. Journal of Environmental Chemical Engineering, 11(3), 110233. https://doi.org/10.1016/j.jece.2023.110233.

Raju, U., Warkar, S. G., & Kumar, A. (2017). Green Synthesis of Multi Metal-Citrate Complexes and Their Characterization. Journal of Molecular Structure, 1133, 90–94. https://doi.org/10.1016/j.molstruc.2016.11.084

Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Férey, G., Morris, R. E., & Serre, C. (2012). Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 112(2), 1232–1268. https://doi.org/10.1021/cr200256v

Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of Metal–Organic Frameworks in Heterogeneous Supramolecular Catalysis. Chemical Society Reviews, 43(16), 6011–6061. https://doi.org/10.1039/C4CS00094C

Cepeda, J., Pérez-Yáñez, S., Beobide, G., Castillo, O., Goikolea, E., Aguesse, F., Garrido, L., Luque, A., & Wright, P. A. (2016). Scandium/Alkaline Metal–Organic Frameworks: Adsorptive Properties and Ionic Conductivity. Chemistry of Materials, 28(8), 2519–2528. https://doi.org/10.1021/acs.chemmater.5b03458

Fujie, K., Ikeda, R., Otsubo, K., Yamada, T., & Kitagawa, H. (2015). Lithium Ion Diffusion in a Metal–Organic Framework Mediated by an Ionic Liquid. Chemistry of Materials, 27(21), 7355–7361. https://doi.org/10.1021/acs.chemmater.5b02986

Lee, H.-Y. (2011). A Study on the Synthesis of Aluminum Tartrate from Aluminum Chloride Solutions. Resources Recycling. 20(2), 54-59. https://doi.org/10.7844/kirr.2011.20.2.054

Greenstein, G. R. (2007). The Merck index: An Encyclopedia of Chemicals, Drugs, and Biologicals. Reference Reviews, 21(6), 40-40. https://doi.org/10.1108/09504120710775534

Desroches, S., Daydé, S., & Berthon, G. (2000). Aluminum Speciation Studies in Biological Fluids. Journal of Inorganic Biochemistry, 81(4), 301–312. https://doi.org/10.1016/s0162-0134(00)00072-6

Khunur, M. M., & Prananto, Y. P. (2018). Synthesis and Structure of 2D Cobalt(II)-tartrate Hydrate Coordination Polymers Crystallised from Aqueous Solution. Bulletin of Chemical Reaction, Engineering, & Catalysis, 13(2), 213–219. https://doi.org/10.9767/bcrec.13.2.1342.213-219

Prananto, Y. P., Wibisono, R. D., Fadhilah, S. G., Tjahjanto, R., Darjito, & Salsabila, F. L. (2022). Crystallization of Mn(II) and Cd(II) Complexes in A Water-Methanol System: Tartrate vs Nicotinamide Ligand Selectivity. Acta Chimica Asiana, 5(1), 166–172. https://doi.org/10.29303/aca.v5i1.114

Rafika, A. H., Khunur, M. M., Tjahjanto, R. T. & Prananto, Y. P. (2022). Effect of Drying Temperature and Drying Time On The Crystallinity Degree of Zn(II)-tartrate Complex. Kuwait Journal of Chemistry, 50(4), 596–601. https://doi.org/10.1016/j.kjs.2023.03.007

Zokaee, Z., Mahmoodi, N. M., Rahimpour, M. R., & Shariati, A. (2022). Synthesis of visible light activated metal-organic framework coated on titania nanocomposite (MIL-53(Al)@TiO2) and dye photodegradation. Journal of Solid State Chemistry, 307, 122747. https://doi.org/10.1016/j.jssc.2021.122747

Hydrothermal Synthesis of Crystalline Aluminium(III)-Tartrate: Effect of Tartrate Type and Molar Ratio

Downloads

Published

2025-05-31

How to Cite

Prananto, Y. P., Purwonugroho, D., Dzakwan, M. N. T., Setianingsih, T., & Syarifah, N. (2025). Hydrothermal synthesis of crystalline Aluminium(III)-Tartrate: effect of tartrate type and molar ratio. Acta Chimica Asiana, 8(1), 599–605. https://doi.org/10.29303/aca.v8i1.244

Issue

Section

Articles

Most read articles by the same author(s)