Quantum Dynamic Approach of B2N(∓,0) and N2B (∓,0) Clusters Study: A Symmetry Breaking due to the Jahn-Teller Effect

Authors

  • Majid Monajjemi Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

DOI:

https://doi.org/10.29303/aca.v7i1.168

Keywords:

Boron nitride, 〖B_2 N〗^((∓,0)), 〖N_2 B〗^((∓,0)), Jahn-Teller, Symmetry Breaking

Abstract

BN compounds play an important role in the preparation of hyper- thin films, that have received signifcant attention in products. In this article, we investigated the electronic structures of and. Triatomic NBN and BNB have recently been studied using various experimental and calculation approaches, and it is totally agreed that both of them are linear in their  ground electronic step. The six ions including B2N (-), B2N (+), B2N (0) , BN2 (-), BN2 (+) and BN2 (0) have been studied and been also compared with one another in terms of several basis sets and predication of the symmetry breaking (SB) subject. Artifactual SB with the v3 vibration is occurred in the trial wave functions of coupled-cluster level, even when Brueckner orbitals of all nitrogen and oxygen atoms are used. In the  of  and  molecules, the unpaired electrons are delocalized, while in the asymmetric, they are localized on either one of the B atoms or N atoms of  and  , respectively. Structures with (SB),, can be stronger by interaction to the . Hereby, the second-order Jahn-Teller effect allows the unpaired electron to localize on boron atom, rather than being delocalized. Finally, from a statistical thermodynamical analysis, we calculated the thermodynamically stabilities of those six ions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

J.M.L. Martin, J.-P. François, and R. Gijbels, Chem. Phys., 90, 6469 (1989). doi: org/ 10.1063/1.456313.

K.R.Asmis, T.R.Taylor, and D.M. Neumark, J. Chem. Phys., 111, 8838 (1999). doi: org/ 10.1063/1.480230.

J.M.L.Martin, J.-P.François, and R. Gijbels, Chem. Phys. Lett., 172, 354 (1990). doi: org/10.1016/s0009-2614(90)87126-c.

L.B.Knight, Jr.D.W.Hill, T.J.Kirk, and C.A. Arrington, J. Phys. Chem., 96, 5604 (1992). https://doi.org/10.1063/1.462703.

J. M. L.Martin, J.-P.François, and R. Gijbels, Chem. Phys. Lett. 193, 243 (1992). doi: org/10.1016/0009-2614(92)85662-T.

P. Hassanzadeh, and L. Andrews, J. Phys. Chem. 96, 9177 (1992). doi: org/10.1021/j100202a020.

L. Andrews, P. Hassanzadeh, T. R. Burkholder, and J. M. L. Martin, J.Chem. Phys. 98, 922 (1993). doi: org/10.1063/1.464256.

C. A. Thompson, and L. Andrews, J. Am. Chem. Soc. 117, 10125 (1995). doi: org/10.1021/ja00145a029.

X. Li, and J. Paldus, J. Chem. Phys. 126, 224304 (2007). doi: org/10.1063/1.2746027.

J.M.L. Martin, J. El-Yazal, Mol. Phys. 85,527 (1995). doi: org/10.1080/00268979500101281.

G.Meloni, M. Sai Baba, and A. Gingerich, J. Chem. Phys. 113, 8995 (2000).doi: org/10.1063/1.1319353.

W. R. M. Graham, and W. Weltner Jr., J. Chern. Phys. 65, 1516 (1976). doi: org/10.1063/1.433206.

M. Monajjemi, Chemical Physics. 425, 29 (2013). doi: org/10.1016/j.chemphys.2013.07.014.

M.Monajjemi, V.S.Lee, M.Khaleghian, B.Honarparvar, F. Mollaamin, J. Phys. Chem. C, 114, 15315 (2010). doi: org/10.1021/jp104274z.

M.Monajjemi, J.E. Boggs, J. Phys. Chem. A, 117, 1670 (2013). doi: org/10.1021/jp312073q.

M. Monajjemi, Struct. Chem. 23, 551 ( 2012). doi: org /10.1007 /s11224-011-9895-8.

L. Mahdavian, M. Monajjemi, Microelectronics journal, 41, 142 (2010). doi: org/10.1016/j.mejo.2010.01.011.

Löwdin, P.O. Rev. Mod. Phys. 35, 496 (1963). doi: org/10.1103/REVMODPHYS.35.724.

E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York, p. 259 (1959).

G. Seifert, B. Schwab, S. Becker, and H. J. Dietze, Int. J. Mass Spectr. Ion

Proc. 85, 327 (1988).

V. Barone, Recent Advances in Density functional methods, parts I, Ed. D.P.Chong , world scientific publ. Co, springer, (1996).

X.Blase, A.Rubio, S.G.Louie, and M.L. Cohen, Europhysics Letters (EPL), 28, 335 (1994). doi: org/10.1209/0295-5075/28/5/007.

X. Blase, J.C. Charlier, A.de.Vita, R. Car, Appl. Phys. Lett. 70, 197 (1997). doi: org/10.1063/1.118354.

W.Han, Y.Bando, K.Kurashima, and T. Sato, Appl. Phys. Lett. 73, 3085 (1998). doi: org/10.1063/1.122680.

T.E.H. Walker, W. G. Richards, J.chem.phys. 52, 1311 (1970). doi: org/10.1063/1.1673131.

S. Koseki, M.W. Schmidt, and M.S. Gordon, J.phys.chem. 96, 10768 (1992). doi: org/10.1021/j100205a033.

J.A. Pople, M. Head-Gordon, and K. Raghavachari, J.chem.phys., 87, 5968 (1987). https://doi.org/10.1063/1.453520.

R.F.W. Bader, Atoms in Molecule: A quantum Theory , Oxford Univ. press, Oxford, (1990).

B.H. Besler, K.M. Merz Jr., and P.A. Kollman, J. comp. Chem. 11, 431 (1990). doi: org/10.1002/jcc.540110404.

L.E. Chirlian, and M.M. Francl, J.comp.chem. 8, 894 (1987). doi: org/10.1002/jcc.540080616.

C.M. Breneman, and K.B. Wiberg, J. Comp.Chem. 11, 361 (1990). doi: org/10.1002/jcc.540110311.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, (2016).

G. Herzberg, Infrared and Raman Spectra ofPolyatomic Molecules (Van

Nostrand Reinhold, New York), p. 521 If. (1945).

Manual ofsymbols and Terminology for Physico-chemical Quantities and

Units (prepared by M. L. McGlashan, revision prepared by M. A. Paul,

second revision by D. H. Whilfen) , Pure Appl. Chern. 51,1 (1979).

S. Bagheri, M.Monajjemi, A. Ziglari , A. Taghvamanesh ,Russian Journal of Physical Chemistry B, 15, S140-S148 (2021), doi: org/10.1134/S1990793121090049.

M. A. Ashraf, Z. Liu & M. Najafi , Russian Journal of Physical Chemistry B, 14, 217-221 (2020), doi: org/10.1134/S1990793120020189.

A. Yu. Shaulov, L. V. Vladimirov, A. V. Grachev, V. M. Lalayan, E. M. Nechvolodova, R. A. Sakovich, V. K. Skachkova, E. V. Stegno, L. A. Tkachenko, S. A. Patlazhan & A. A. Berlin, Russ. J. Phys. Chem. B, 14, 183-189 (2020). doi:org/10.1134/S1990793120010157.

E.A. Lebedeva, S.A. Astaf’eva, T.S. Istomina, Russ. J. Phys. Chem. B, 16, 316-322 (2022). doi: org/10.1134/S1990793122010109.

A.G. Korotkikh, I.V. Sorokin, E.A. Selikhova, V. A. Arkhipov, Russ. J. Phys. Chem. B, 14, 592-600 (2020). doi :org/10.1134/S1990793120040089.

A.G. Korotkikh, I.V. Sorokin, V.A. Arkhipov, Russ. J. Phys. Chem. B, 16, 253-259 (2022). doi: org/10.1134/S1990793122020075.

Gerasimov, G. N. ; Gromov,V. F.; Ikim, M. I.; L. I. Trakhtenberg, Effect of Composition and Structure of Metal Oxide Composites Nanostructured on Their Conductive and Sensory Properties, Russ. J. Phys. Chem., 2021, 15, 1072–1083. https://doi.org/ 10.1134/ S199079 31 21310018.

Kablov, V.F., Strakhov, V.L., Kaledin, V.O. et al. Mathematical Modeling of the Physicochemical Properties of a Heat-Shielding Material from Highly Filled Elastomers. Russ. J. Phys. Chem. B 2021, 15, 880–887. https://doi.org/ 10.1134/ S199079 31210 50043.

Sarvendra Kumar, Surbhi & Yadav, M.K. Optimized Molecular Geometries, Internal Coordinates, Vibrational Analysis, Thermodynamic Properties, First Hyperpolarizability and HOMO–LUMO Analysis of Duroquinone Using Density Functional Theory and Hartree–Fock Method. Russ. J. Phys. Chem. B 2021, 15 (Suppl 1), S22–S31. https://doi.org/ 10.1134/ S1990793121090116.

Sakovich, R.A., Shaulov, A.Y., Nechvolodova, E.M. et al. Energy of Intramolecular Interactions and Structure of Metallophosphate Polycomplexes with Water Molecules and Nitrogen-Containing Compounds. Russ. J. Phys. Chem. B 2020, 14, 516–521. https://doi.org/10.1134/S1990793120030094.

〖B_2 N〗^((∓,0))and 〖N_2 B〗^((∓,0))Clusters Study: A Symmetry Breaking due to the Jahn-Teller Effect

Downloads

Published

2024-04-17

How to Cite

Monajjemi, M. (2024). Quantum Dynamic Approach of B2N(∓,0) and N2B (∓,0) Clusters Study: A Symmetry Breaking due to the Jahn-Teller Effect. Acta Chimica Asiana, 7(1), 356–365. https://doi.org/10.29303/aca.v7i1.168

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.