Biomass waste as a photoprotective agent in the formulation of sunscreen preparation
DOI:
https://doi.org/10.29303/aca.v8i1.246Keywords:
Lignin, Photoprotective, Biomass Waste, Sunscreen, SPFAbstract
UVA and UVB radiation from sunlight may lead to erythema and skin cancer. Those risks can be reduced by using photoprotective agents. Sunscreen is a photoprotective agent that successfully protects the skin from ultraviolet radiation. However, the active ingredients containing synthetic chemicals can hurt the skin. This review provides knowledge regarding using lignin compounds obtained from biomass waste as photoprotective agents that have been investigated for performance. The method of study applied is a literature review of original research conducted within the last ten years. Data were searched using the keywords biomass waste, photoprotective, and sunscreen on the Pubmed and Google Scholar websites. The results showed that lignin can be found in varying levels of biomass waste, such as banana stems, coconut shells, corn stalks, rice straws, and others. Delignification of lignin from biomass can be accomplished using basic solvents, acidic solvents, organosolvents, and Deep Eutectic Solvents (DES). The delignification procedure using DES is considered more environmentally friendly and less toxic. The higher the lignin concentration in the cream, the greater the SPF value. This is because lignin contains phenolic, ketone, and other chromophore functional groups capable of absorbing UV radiation. Furthermore, converting lignin molecules into nanoparticles and modifying their chemical structure may enhance the SPF value of lignin-containing creams. The addition of phenolic hydroxyl auxochrome groups and catechol units to the lignin molecule was found to increase the SPF value of lignin. It may be concluded that lignin can be utilized as a photoprotective agent, and biomass waste can be transformed into high-value cosmetic products.
Downloads
Metrics
References
Bahar, Y., Sani, F., & Lestari, U. (2021). Penentuan Nilai Sun Protection Factor (SPF) Ekstrak Etanol Daun Jeruju (Acanthus Ilicifolius L.) secara In Vitro. Indonesian Journal of Pharma Science, 3(2), 91–96.
Chairina, R. R. L., Afandi, M. F., Adove, D. A., & Sularso, R. A. (2023). Dampak Gender pada Pembelian Produk Perawatan Wajah di Negara Beriklim Tropis. Jurnal Maksipreneur: Manajemen, Koperasi, Dan Entrepreneurship, 12(2), 368. https://doi.org/10.30588/jmp.v12i2.1274
He, H., Li, A., Li, S., Tang, J., Li, L., & Xiong, L. (2021). Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomedicine and Pharmacotherapy, 134, 1–11. https://doi.org/10.1016/j.biopha.2020.111161
Minerva, P. (2019). Penggunaan Tabir Surya Bagi Kesehatan Kulit. Jurnal Pendidikan Dan Keluarga, 11(1), 87. https://doi.org/10.24036/jpk/vol11-iss1/619
Venezia, V., Pota, G., Argenziano, R., Alfieri, M. L., Moccia, F., Ferrara, F., Pecorelli, A., Esposito, R., Di Girolamo, R., D’Errico, G., Valacchi, G., Luciani, G., Panzella, L., & Napolitano, A. (2024). Design of a hybrid nanoscaled skin photoprotector by boosting the antioxidant properties of food waste-derived lignin through molecular combination with TiO2 nanoparticles. International Journal of Biological Macromolecules, 280. https://doi.org/10.1016/j.ijbiomac.2024.135946
Li, H., Colantonio, S., Dawson, A., Lin, X., & Beecker, J. (2019). Sunscreen Application, Safety, and Sun Protection: The Evidence. Journal of Cutaneous Medicine and Surgery, 23(4), 357–369. https://doi.org/10.1177/1203475419856611
Puspitasari, A. D., Mulangsri, D. A. K., & Herlina, H. (2018). Formulasi Krim Tabir Surya Ekstrak Etanol Daun Kersen (Muntingia calabura L.) untuk Kesehatan Kulit. Media Penelitian Dan Pengembangan Kesehatan, 28(4), 263–270. https://doi.org/10.22435/mpk.v28i4.524
Qian, Y., Qiu, X., & Zhu, S. (2015). Lignin: a nature-inspired sun blocker for broad-spectrum sunscreen. Green Chemistry, 17(1), 320–324. https://doi.org/10.1039/b000000x
Vasile, C., & Baican, M. (2023). Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers, 15(15), 1–52. https://doi.org/10.3390/polym15153177
Parinduri, L., & Parinduri, T. (2020). Konversi Biomassa Sebagai Sumber Energi Terbarukan. Journal of Electrical Technology, 5(2), 88–92. https://www.dosenpendidikan.
Rifdah, Herawati, N., & Dubron, F. (2017). Pembuatan Biobriket dari Limbah Tongkol Jagung Pedagang Jagung Rebus Dan Rumah Tangga Sebagai Bahan Bakar Energi Terbarukan Dengan Proses Karbonisasi. Distilasi, 2(2), 39–46.
Hidayati, N., & Ekayuliana, A. (2022). Studi Potensial Energi Biomassa dari Limbah Pertanian dan Perkebunan di Indonesia. Seminar Nasional Inovasi Vokasi, 1(1), 130–135. http://prosiding-old.pnj.ac.id/index.php/sniv/article/view/4541
Kasmaniar, Yana, S., Nelly, Fitriliana, Susanti, Hanum, F., & Rahmatullah, A. (2023). Pengembangan Energi Terbarukan Biomassa dari Sumber Pertanian, Perkebunan dan Hasil Hutan : Kajian Pengembangan dan Kendalanya. Jurnal Serambi Engineering, 8(1), 4957–4964.
Arruda, M. D. M., da Paz Leôncio Alves, S., da Cruz Filho, I. J., de Sousa, G. F., de Souza Silva, G. A., do Nascimento Santos, D. K. D., do Carmo Alves de Lima, M., de Moraes Rocha, G. J., de Souza, I. A., & de Melo, C. M. L. (2021). Characterization of a lignin from Crataeva tapia leaves and potential applications in medicinal and cosmetic formulations. International Journal of Biological Macromolecules, 180, 286–298. https://doi.org/10.1016/j.ijbiomac.2021.03.077
Widsten, P., Tamminen, T., & Liitiä, T. (2020). Natural Sunscreens Based on Nanoparticles of Modified Kraft Lignin (CatLignin). ACS Omega, 5(22), 13438–13446. https://doi.org/10.1021/acsomega.0c01742
Astuti, W. (2018). Adsorpsi Menggunakan Material Berbasis Lignoselulosa. Unnes Press.
Bahri, S. (2015). Pembuatan Pulp dari Batang Pisang. Jurnal Teknologi Kimia Unimal, 4(2), 36–50. http://ft.unimal.ac.id/teknik_kimia/jurnal
Larasati, I. A., Argo, B. D., & Hawa, L. C. (2019). Proses Delignifikasi Kandungan Lignoselulosa Serbuk Bambu Betung dengan Variasi NaOH dan Tekanan. Jurnal Keteknikan Pertanian Tropis Dan Biosistem, 7(3), 235–244. https://doi.org/10.21776/ub.jkptb.2019.007.03.03
Rilek, N. M., Hidayat, N., & Sugiarto, Y. (2017). Hidrolisis Lignoselulosa Hasil Pretreatment Pelepah Sawit (Elaeis guineensis Jacq) menggunakan H 2 SO 4 pada Produksi Bioetanol. Industria: Jurnal Teknologi Dan Manajemen Agroindustri, 6(2), 76–82.
Pairon, M. S., Ali, F., Ahmad, F., Anuar, H., Abdul Rahman, N. A., Saeed Mirghani, M. E., Suhr, J., & Thomas, S. (2022). Review on Solvent Extraction Methods of Lignin from Oil Palm Empty Fruit Bunches (OPEFB). Journal of Natural Fibers, 19(15), 11507–11523. https://doi.org/10.1080/15440478.2022.2026270
Mohamad, N. A. N., & Jai, J. (2022). Response surface methodology for optimization of cellulose extraction from banana stem using NaOH-EDTA for pulp and papermaking. Heliyon, 8. https://doi.org/10.1016/j.heliyon.2022.e09114
Wang, Q., Chang, L., Wang, W., Hu, Y., Yue, J., Wang, Z., Liang, C., & Qi, W. (2023). Simultaneous saccharification of hemicellulose and cellulose of corncob in a one-pot system using catalysis of carbon based solid acid from lignosulfonate. RSC Advances, 13(41), 28542–28549. https://doi.org/10.1039/d3ra05283d
Kurniaty, I., Habibah, U., Yustiana, D., & Fajriah, I. (2017). Proses Delignifikasi Menggunakan NaOH dan Amonia (NH3) pada Tempurung Kelapa. Jurnal Integrasi Proses, 6(4), 197–201
Pratiwi, R., Rahayu, D., & Barliana, M. I. (2016). Pemanfaatan Selulosa Dari Limbah Jerami Padi (Oryza sativa) Sebagai Bahan Bioplastik. Indonesian Journal of Pharmaceutical Science and Technology, 3(3), 83–91. https://doi.org/10.15416/ijpst.v3i3.9406
Ma, H., Fu, P., Zhao, J., Lin, X., Wu, W., Yu, Z., Xia, C., Wang, Q., Gao, M., & Zhou, J. (2022). Pretreatment of Wheat Straw Lignocelluloses by Deep Eutectic Solvent for Lignin Extraction. Molecules, 27(7955), 1–14. https://doi.org/10.3390/molecules27227955
Rilek, N. M., Hidayat, N., & Sugiarto, Y. (2017). Hidrolisis Lignoselulosa Hasil Pretreatment Pelepah Sawit (Elaeis guineensis Jacq) menggunakan H 2 SO 4 pada Produksi Bioetanol. Industria: Jurnal Teknologi Dan Manajemen Agroindustri, 6(2), 76–82.
Martínez-Ramírez, A. P., Rincón-Ortiz, S. A., Baldovino-Medrano, V. G., Blanco-Tirado, C., & Combariza, M. Y. (2023). Influence of reaction variables on the surface chemistry of cellulose nanofibers derived from palm oil empty fruit bunches. RSC Advances, 13(51), 36117–36129. https://doi.org/10.1039/d3ra06933h
Erdiwansyah, Muhtadin, Gani, A., Faisal, M., Nizar, M., & Darnas, Y. (2023). Konversi Limbah Biomassa Tandan Kosong Sawit menjadi Energi Panas. Jurnal Serambi Engineering, 9(1), 8002–8009. https://doi.org/10.32672/jse.v9i1.803
Ong, V. Z., Wu, T. Y., Lee, C. B. T. L., Cheong, N. W. R., & Shak, K. P. Y. (2019). Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds. Ultrasonics Sonochemistry, 58. https://doi.org/10.1016/j.ultsonch.2019.05.015
Mao, Y., Gerrow, A., Ray, E., Perez, N. D., Edler, K., Wolf, B., & Binner, E. (2023). Lignin recovery from cocoa bean shell using microwave-assisted extraction and deep eutectic solvents. Bioresource Technology, 372. https://doi.org/10.1016/j.biortech.2023.128680
Holm, A., & Niklasson, R. (2018). The effect on wood components during soda pulping [Chalmers University of Technology]. http://publications.lib.chalmers.se/records/fulltext/254921/254921.pdf
Rajan, K., Berton, P., Rogers, R. D., & Shamshina, J. L. (2024). Is Kraft Pulping the Future of Biorefineries? A Perspective on the Sustainability of Lignocellulosic Product Development. Polymers, 16, 1–22. https://doi.org/10.3390/polym16233438
Sadeghifar, H., & Ragauskas, A. (2020). Lignin as a UV Light Blocker-A Review. Polymers, 12(5), 1–10. https://doi.org/10.3390/POLYM12051134
Antunes, F., Mota, I. F., Fangueiro, J. F., Lopes, G., Pintado, M., & Costa, P. S. (2023). From sugarcane to skin: Lignin as a multifunctional ingredient for cosmetic application. International Journal of Biological Macromolecules, 234(December 2022), 0–9. https://doi.org/10.1016/j.ijbiomac.2023.123592
Perera, U. P., Foo, M. L., & Chew, I. M. L. (2023). Synthesis and characterization of lignin nanoparticles isolated from oil palm empty fruit bunch and application in biocomposites. Sustainable Chemistry for Climate Action, 2(September 2022). https://doi.org/10.1016/j.scca.2022.100011
Lee, S. C., Yoo, E., Lee, S. H., & Won, K. (2020). Preparation and application of light-colored lignin nanoparticles for broad-spectrum sunscreens. Polymers, 12(3), 1–14. https://doi.org/10.3390/polym12030699
Pasma, S. A., Daik, R., Ramli, S., Maskat, M. Y., & Zulfakar, M. H. (2019). Enzymatic degradation of lignin extracted from oil palm empty fruit bunch using laccase and cutinase. BioResources, 14(4), 8879–8891. https://doi.org/10.15376/biores.14.4.8879-8891
Gordobil, O., Olaizola, P., Banales, J. M., & Labidi, J. (2020). Lignins from agroindustrial by-products as natural ingredients for cosmetics: Chemical structure and in vitro sunscreen and cytotoxic activities. Molecules, 25(1131), 1–16. https://doi.org/10.3390/molecules25051131
da Mata, A. K. A., Felipe, V. T. de A., Mazzetto, S. E., Lomonaco, D., & Avelino, F. (2022). Development of an eco-friendly acetosolv protocol for tuning the acetylation of coconut shell lignin: Structural, antioxidant, solubility and UV-blocking properties. International Journal of Biological Macromolecules, 211, 271–280. https://doi.org/10.1016/j.ijbiomac.2022.05.066
Bouza, R. J., Gu, Z., & Evans, J. H. (2016). Screening conditions for acid pretreatment and enzymatic hydrolysis of empty fruit bunches. Industrial Crops and Products, 84, 67–71. https://doi.org/10.1016/j.indcrop.2016.01.041
Medina, J. D. C., Woiciechowski, A., Filho, A. Z., Noseda, M. D., Kaur, B. S., & Soccol, C. R. (2015). Lignin preparation from oil palm empty fruit bunches by sequential acid/alkaline treatment – A biorefinery approach. Bioresource Technology, 194.
De, S., Mishra, S., Poonguzhali, E., Rajesh, M., & Tamilarasan, K. (2019). Fractionation and characterization of lignin from waste rice straw: Biomass surface chemical composition analysis. International Journal of Biological Macromolecules, 145, 795–803. https://doi.org/10.1016/j.ijbiomac.2019.10.068
Liu, Y., Zheng, J., Xiao, J., He, X., Zhang, K., Yuan, S., Peng, Z., Chen, Z., & Lin, X. (2019). Enhanced Enzymatic Hydrolysis and Lignin Extraction of Wheat Straw by Triethylbenzyl Ammonium Chloride/Lactic Acid-Based Deep Eutectic Solvent Pretreatment. ACS Omega, 4(22), 19829–19839. https://doi.org/10.1021/acsomega.9b02709
Li, T., Jin, X., Shen, X., Liu, H., Tong, R., Qiu, X., & Xu, J. (2024). Study on the Relationship between the Structure and Pyrolysis Characteristics of Lignin Isolated from Eucalyptus, Pine, and Rice Straw through the Use of Deep Eutectic Solvent. Molecul, 29(219), 1–16.
Kumar, A. K., Parikh, B. S., & Pravakar, M. (2016). Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environmental Science and Pollution Research, 23, 9265–9275. https://doi.org/10.1007/s11356-015-4780-4
Kohli, K., Katuwal, S., Biswas, A., & Sharma, B. K. (2020). Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents. Bioresource Technology, 303. https://doi.org/10.1016/j.biortech.2020.122897
Lyu, G., Li, T., Ji, X., Yang, G., Liu, Y., Lucia, L. A., & Chen, J. (2018). Characterization of lignin extracted from willow by deep eutectic solvent treatments. Polymers, 10(869), 1–11. https://doi.org/10.3390/polym10080869
Sari, N., Dwiatmoko, A. A., Sudiyarmanto, S., Saridewi, N., Aulia, F., & Rinaldi, N. (2018). A preliminary study on Ru/TiO2 as heterogeneous catalyst for the depolymerization of empty fruit bunch-derived organosolv lignin. AIP Conference Proceedings. https://doi.org/10.1063/1.5065013
Wang, W., & Lee, D.-J. (2021). Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: A review. Bioresource Technology, 339(125587).
Ning, P., Yang, G., Hu, L., Sun, J., Shi, L., Zhou, Y., Wang, Z., & Yang, J. (2021). Recent Advances in the Valorization of Plant Biomass. Biotechnology for Biofuels, 14(1), 1–22.
Saini, S., Kumar, N., Dudi, K., Chaudhary, G., Chaudhary, N., & Kumar, N. (2024). Alkali-based lignin extraction from lignocellulosic material and upgradation of residual pulp as bio-packaging material towards sustainable biomass utilization. Bioresource Technology Reports, 26(April), 101853. https://doi.org/10.1016/j.biteb.2024.101853
Tan, Y. T., Ngoh, G. C., & Chua, A. S. M. (2019). Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin. Bioresource Technology, 281, 359–366. https://doi.org/10.1016/j.biortech.2019.02.010
Perna, F. M., Vitale, P., & Capriati, V. (2019). Deep eutectic solvents and their applications as green solvents. Current Opinion in Green and Sustainable Chemistry, 21, 27–33. https://doi.org/10.1016/j.cogsc.2019.09.004
Gagosian, V. S. C., Claro, F. C., Schwarzer, A. C. de A. P., Cruz, J. V., Thá, E. L., Trindade, E. da S., Magalhães, W. L. E., Pestana, C. B., & Leme, D. M. (2022). The potential use of kraft lignins as natural ingredients for cosmetics: Evaluating their photoprotective activity and skin irritation potential. International Journal of Biological Macromolecules, 222(October), 2535–2544. https://doi.org/10.1016/j.ijbiomac.2022.10.037
Gutiérrez-Hernández, J. M., Escalante, A., Murillo-Vázquez, R. N., Delgado, E., González, F. J., & Toríz, G. (2016). Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection. Journal of Photochemistry and Photobiology B: Biology, 163, 156–161. https://doi.org/10.1016/j.jphotobiol.2016.08.027
Ratanasumarn, N., & Chitprasert, P. (2020). Cosmetic potential of lignin extracts from alkaline-treated sugarcane bagasse: Optimization of extraction conditions using response surface methodology. International Journal of Biological Macromolecules, 153, 138–145. https://doi.org/10.1016/j.ijbiomac.2020.02.328
Wu, Y., Qian, Y., Lou, H., Yang, D., & Qiu, X. (2019). Enhancing the Broad-Spectrum Adsorption of Lignin through Methoxyl Activation, Grafting Modification, and Reverse Self-Assembly [Research-article]. ACS Sustainable Chemistry and Engineering, 7(19), 15966–15973. https://doi.org/10.1021/acssuschemeng.9b02317
Komisarz, K., Majka, T. M., & Pielichowski, K. (2023). Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials. Materials, 16(16), 1–40. https://doi.org/10.3390/ma16010016
Duy, N. Van, Tsygankov, P. Y., & Menshutina, N. V. (2024). Facile Lignin Extraction and Application as Natural UV Blockers in Cosmetic Formulations. ChemEngineering, 8(69), 1–14. https://doi.org/10.3390/chemengineering8040069
Nitulescu, G., Lupuliasa, D., Adam-Dima, I., & Nitulescu, G. M. (2023). Ultraviolet Filters for Cosmetic Applications. Cosmetics, 10(4). https://doi.org/10.3390/cosmetics10040101
Zhang, Y., & Naebe, M. (2021). Lignin: A Review on Structure, Properties, and Applications as a Light-Colored UV Absorber. ACS Sustainable Chemistry and Engineering, 9(4), 1427–1442. https://doi.org/10.1021/acssuschemeng.0c06998
Marcin, S., & Aleksander, A. (2023). Acute toxicity assessment of nine organic UV filters using a set of biotests. Toxicological Research, 39(4), 649–667. https://doi.org/10.1007/s43188-023-00192-2
Narla, S., & Lim, H. W. (2020). Sunscreen: FDA regulation, and environmental and health impact. Photochemical and Photobiological Sciences, 19(1), 66–70. https://doi.org/10.1039/c9pp00366e
Siller, A., Blaszak, S. C., Lazar, M., & Olasz Harken, E. (2018). Update about the effects of the sunscreen ingredients oxybenzone and octinoxate on humans and the environment. Plastic Surgical Nursing, 38(4), 158–161. https://doi.org/10.1097/PSN.0000000000000244
Piccinino, D., Capecchi, E., Trifero, V., Tomaino, E., Marconi, C., Del Giudice, A., Galantini, L., Poponi, S., Ruggieri, A., & Saladino, R. (2022). Lignin Nanoparticles as Sustainable Photoprotective Carriers for Sunscreen Filters. ACS Omega, 7(42), 37070–37077. https://doi.org/10.1021/acsomega.2c02133
Kanani, N., Rochmat, A., Pahlevi, R., & Rohani, F. Y. (2017). Pengaruh Temperatur Terhadap Nilai Sun Protecting Factor (Spf) Pada Ekstrak Kunyit Putih Sebagai Bahan Pembuat Tabir Surya Menggunakan Pelarut Etil Asetat Dan Metanol. Jurnal Integrasi Proses, 6(3), 143–147. https://doi.org/10.36055/jip.v6i3.1450
Pramiastuti, O. (2019). Penentuan Nilai Spf (Sun Protection Factor) Ekstrak Dan Fraksi Daun Kecombrang (Etlingera Elatior) Secara in Vitro Menggunakan Metode Spektrofotometri. Parapemikir : Jurnal Ilmiah Farmasi, 8(1), 14–18. https://doi.org/10.30591/pjif.v8i1.1281
Girard, V., Fragnières, L., Chapuis, H., Brosse, N., Marchal-Heussler, L., Canilho, N., Parant, S., & Ziegler-Devin, I. (2024). The Impact of Lignin Biopolymer Sources, Isolation, and Size Reduction from the Macro- to Nanoscale on the Performances of Next-Generation Sunscreen. Polymers, 16, 2–18. https://doi.org/10.3390/polym16131901
Zhang, H., Liu, X., Fu, S., & Chen, Y. (2019). High-value utilization of kraft lignin: Color reduction and evaluation as sunscreen ingredient. International Journal of Biological Macromolecules, 133, 86–92. https://doi.org/10.1016/j.ijbiomac.2019.04.092
Gordobil, O., Herrera, R., Yahyaoui, M., Ilk, S., Kaya, M., & Labidi, J. (2018). Potential use of kraft and organosolv lignins as a natural additive for healthcare products. RSC Advances, 8, 24525–24533. https://doi.org/10.1039/c8ra02255k
Li, S. X., Li, M. F., Bian, J., Wu, X. F., Peng, F., & Ma, M. G. (2019). Preparation of organic acid lignin submicrometer particle as a natural broad-spectrum photo-protection agent. International Journal of Biological Macromolecules, 132, 836–843. https://doi.org/10.1016/j.ijbiomac.2019.03.177
Siregar, S. H., Nasution, H., Irma, W., Suwito, D., Rahmadani, A. R., & Han, S.-L. (2023). Synthesis and characterization of activated carbon from biomass waste reject pulp as an adsorbent for wastewater treatment . Acta Chimica Asiana, 6(2), 351–355. https://doi.org/10.29303/aca.v6i2.164
Pylypchuk, I. V, Karlsson, M., Lindén, P. A., Lindström, M. E., Elder, T., Sevastyanova, O., & Lawoko, M. (2023). Molecular understanding of the morphology and properties of lignin nanoparticles : unravelling the potential for tailored applications †. Green Chemistry, 25, 4415–4428. https://doi.org/10.1039/d3gc00703k
Lee, S. C., Tran, T. M. T., Choi, J. W., & Won, K. (2019). Lignin for white natural sunscreens. International Journal of Biological Macromolecules, 122, 549–554. https://doi.org/10.1016/j.ijbiomac.2018.10.184
Qiu, X., Yu, J., Yang, D., Mo, W., & Qian, Y. (2017). Whitening Sulfonated Alkali Lignin via H2O2/UV Radiation and Its Application As Dye Dispersant. ACS Sustainable Chemistry & Engineering, 6(1), 1055–1060.
Zhang, H., Bai, Y., Zhou, W., & Chen, F. (2017). Color Reduction of Sulfonated Eucalyptus Kraft Lignin. International Journal of Biological Macromolecules, 97, 201–208.
Zhang, H., Bai, Y., Zhou, W., & Chen, F. (2017). Color Reduction of Sulfonated Eucalyptus Kraft Lignin. International Journal of Biological Macromolecules, 97, 201–208.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Elzandra Imola Vioniken, Devi Ratnasari

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with ACA: Acta Chimica Asiana agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in ACA: Acta Chimica Asiana.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).