Biomass waste as a photoprotective agent in the formulation of sunscreen preparation

Authors

  • Elzandra Imola Vioniken University of Singaperbangsa Karawang
  • Devi Ratnasari University of Singaperbangsa Karawang

DOI:

https://doi.org/10.29303/aca.v8i1.246

Keywords:

Lignin, Photoprotective, Biomass Waste, Sunscreen, SPF

Abstract

UVA and UVB radiation from sunlight may lead to erythema and skin cancer. Those risks can be reduced by using photoprotective agents. Sunscreen is a photoprotective agent that successfully protects the skin from ultraviolet radiation. However, the active ingredients containing synthetic chemicals can hurt the skin. This review provides knowledge regarding using lignin compounds obtained from biomass waste as photoprotective agents that have been investigated for performance. The method of study applied is a literature review of original research conducted within the last ten years. Data were searched using the keywords biomass waste, photoprotective, and sunscreen on the Pubmed and Google Scholar websites. The results showed that lignin can be found in varying levels of biomass waste, such as banana stems, coconut shells, corn stalks, rice straws, and others. Delignification of lignin from biomass can be accomplished using basic solvents, acidic solvents, organosolvents, and Deep Eutectic Solvents (DES). The delignification procedure using DES is considered more environmentally friendly and less toxic. The higher the lignin concentration in the cream, the greater the SPF value. This is because lignin contains phenolic, ketone, and other chromophore functional groups capable of absorbing UV radiation. Furthermore, converting lignin molecules into nanoparticles and modifying their chemical structure may enhance the SPF value of lignin-containing creams. The addition of phenolic hydroxyl auxochrome groups and catechol units to the lignin molecule was found to increase the SPF value of lignin. It may be concluded that lignin can be utilized as a photoprotective agent, and biomass waste can be transformed into high-value cosmetic products.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bahar, Y., Sani, F., & Lestari, U. (2021). Penentuan Nilai Sun Protection Factor (SPF) Ekstrak Etanol Daun Jeruju (Acanthus Ilicifolius L.) secara In Vitro. Indonesian Journal of Pharma Science, 3(2), 91–96.

Chairina, R. R. L., Afandi, M. F., Adove, D. A., & Sularso, R. A. (2023). Dampak Gender pada Pembelian Produk Perawatan Wajah di Negara Beriklim Tropis. Jurnal Maksipreneur: Manajemen, Koperasi, Dan Entrepreneurship, 12(2), 368. https://doi.org/10.30588/jmp.v12i2.1274

He, H., Li, A., Li, S., Tang, J., Li, L., & Xiong, L. (2021). Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomedicine and Pharmacotherapy, 134, 1–11. https://doi.org/10.1016/j.biopha.2020.111161

Minerva, P. (2019). Penggunaan Tabir Surya Bagi Kesehatan Kulit. Jurnal Pendidikan Dan Keluarga, 11(1), 87. https://doi.org/10.24036/jpk/vol11-iss1/619

Venezia, V., Pota, G., Argenziano, R., Alfieri, M. L., Moccia, F., Ferrara, F., Pecorelli, A., Esposito, R., Di Girolamo, R., D’Errico, G., Valacchi, G., Luciani, G., Panzella, L., & Napolitano, A. (2024). Design of a hybrid nanoscaled skin photoprotector by boosting the antioxidant properties of food waste-derived lignin through molecular combination with TiO2 nanoparticles. International Journal of Biological Macromolecules, 280. https://doi.org/10.1016/j.ijbiomac.2024.135946

Li, H., Colantonio, S., Dawson, A., Lin, X., & Beecker, J. (2019). Sunscreen Application, Safety, and Sun Protection: The Evidence. Journal of Cutaneous Medicine and Surgery, 23(4), 357–369. https://doi.org/10.1177/1203475419856611

Puspitasari, A. D., Mulangsri, D. A. K., & Herlina, H. (2018). Formulasi Krim Tabir Surya Ekstrak Etanol Daun Kersen (Muntingia calabura L.) untuk Kesehatan Kulit. Media Penelitian Dan Pengembangan Kesehatan, 28(4), 263–270. https://doi.org/10.22435/mpk.v28i4.524

Qian, Y., Qiu, X., & Zhu, S. (2015). Lignin: a nature-inspired sun blocker for broad-spectrum sunscreen. Green Chemistry, 17(1), 320–324. https://doi.org/10.1039/b000000x

Vasile, C., & Baican, M. (2023). Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers, 15(15), 1–52. https://doi.org/10.3390/polym15153177

Parinduri, L., & Parinduri, T. (2020). Konversi Biomassa Sebagai Sumber Energi Terbarukan. Journal of Electrical Technology, 5(2), 88–92. https://www.dosenpendidikan.

Rifdah, Herawati, N., & Dubron, F. (2017). Pembuatan Biobriket dari Limbah Tongkol Jagung Pedagang Jagung Rebus Dan Rumah Tangga Sebagai Bahan Bakar Energi Terbarukan Dengan Proses Karbonisasi. Distilasi, 2(2), 39–46.

Hidayati, N., & Ekayuliana, A. (2022). Studi Potensial Energi Biomassa dari Limbah Pertanian dan Perkebunan di Indonesia. Seminar Nasional Inovasi Vokasi, 1(1), 130–135. http://prosiding-old.pnj.ac.id/index.php/sniv/article/view/4541

Kasmaniar, Yana, S., Nelly, Fitriliana, Susanti, Hanum, F., & Rahmatullah, A. (2023). Pengembangan Energi Terbarukan Biomassa dari Sumber Pertanian, Perkebunan dan Hasil Hutan : Kajian Pengembangan dan Kendalanya. Jurnal Serambi Engineering, 8(1), 4957–4964.

Arruda, M. D. M., da Paz Leôncio Alves, S., da Cruz Filho, I. J., de Sousa, G. F., de Souza Silva, G. A., do Nascimento Santos, D. K. D., do Carmo Alves de Lima, M., de Moraes Rocha, G. J., de Souza, I. A., & de Melo, C. M. L. (2021). Characterization of a lignin from Crataeva tapia leaves and potential applications in medicinal and cosmetic formulations. International Journal of Biological Macromolecules, 180, 286–298. https://doi.org/10.1016/j.ijbiomac.2021.03.077

Widsten, P., Tamminen, T., & Liitiä, T. (2020). Natural Sunscreens Based on Nanoparticles of Modified Kraft Lignin (CatLignin). ACS Omega, 5(22), 13438–13446. https://doi.org/10.1021/acsomega.0c01742

Astuti, W. (2018). Adsorpsi Menggunakan Material Berbasis Lignoselulosa. Unnes Press.

Bahri, S. (2015). Pembuatan Pulp dari Batang Pisang. Jurnal Teknologi Kimia Unimal, 4(2), 36–50. http://ft.unimal.ac.id/teknik_kimia/jurnal

Larasati, I. A., Argo, B. D., & Hawa, L. C. (2019). Proses Delignifikasi Kandungan Lignoselulosa Serbuk Bambu Betung dengan Variasi NaOH dan Tekanan. Jurnal Keteknikan Pertanian Tropis Dan Biosistem, 7(3), 235–244. https://doi.org/10.21776/ub.jkptb.2019.007.03.03

Rilek, N. M., Hidayat, N., & Sugiarto, Y. (2017). Hidrolisis Lignoselulosa Hasil Pretreatment Pelepah Sawit (Elaeis guineensis Jacq) menggunakan H 2 SO 4 pada Produksi Bioetanol. Industria: Jurnal Teknologi Dan Manajemen Agroindustri, 6(2), 76–82.

Pairon, M. S., Ali, F., Ahmad, F., Anuar, H., Abdul Rahman, N. A., Saeed Mirghani, M. E., Suhr, J., & Thomas, S. (2022). Review on Solvent Extraction Methods of Lignin from Oil Palm Empty Fruit Bunches (OPEFB). Journal of Natural Fibers, 19(15), 11507–11523. https://doi.org/10.1080/15440478.2022.2026270

Mohamad, N. A. N., & Jai, J. (2022). Response surface methodology for optimization of cellulose extraction from banana stem using NaOH-EDTA for pulp and papermaking. Heliyon, 8. https://doi.org/10.1016/j.heliyon.2022.e09114

Wang, Q., Chang, L., Wang, W., Hu, Y., Yue, J., Wang, Z., Liang, C., & Qi, W. (2023). Simultaneous saccharification of hemicellulose and cellulose of corncob in a one-pot system using catalysis of carbon based solid acid from lignosulfonate. RSC Advances, 13(41), 28542–28549. https://doi.org/10.1039/d3ra05283d

Kurniaty, I., Habibah, U., Yustiana, D., & Fajriah, I. (2017). Proses Delignifikasi Menggunakan NaOH dan Amonia (NH3) pada Tempurung Kelapa. Jurnal Integrasi Proses, 6(4), 197–201

Pratiwi, R., Rahayu, D., & Barliana, M. I. (2016). Pemanfaatan Selulosa Dari Limbah Jerami Padi (Oryza sativa) Sebagai Bahan Bioplastik. Indonesian Journal of Pharmaceutical Science and Technology, 3(3), 83–91. https://doi.org/10.15416/ijpst.v3i3.9406

Ma, H., Fu, P., Zhao, J., Lin, X., Wu, W., Yu, Z., Xia, C., Wang, Q., Gao, M., & Zhou, J. (2022). Pretreatment of Wheat Straw Lignocelluloses by Deep Eutectic Solvent for Lignin Extraction. Molecules, 27(7955), 1–14. https://doi.org/10.3390/molecules27227955

Rilek, N. M., Hidayat, N., & Sugiarto, Y. (2017). Hidrolisis Lignoselulosa Hasil Pretreatment Pelepah Sawit (Elaeis guineensis Jacq) menggunakan H 2 SO 4 pada Produksi Bioetanol. Industria: Jurnal Teknologi Dan Manajemen Agroindustri, 6(2), 76–82.

Martínez-Ramírez, A. P., Rincón-Ortiz, S. A., Baldovino-Medrano, V. G., Blanco-Tirado, C., & Combariza, M. Y. (2023). Influence of reaction variables on the surface chemistry of cellulose nanofibers derived from palm oil empty fruit bunches. RSC Advances, 13(51), 36117–36129. https://doi.org/10.1039/d3ra06933h

Erdiwansyah, Muhtadin, Gani, A., Faisal, M., Nizar, M., & Darnas, Y. (2023). Konversi Limbah Biomassa Tandan Kosong Sawit menjadi Energi Panas. Jurnal Serambi Engineering, 9(1), 8002–8009. https://doi.org/10.32672/jse.v9i1.803

Ong, V. Z., Wu, T. Y., Lee, C. B. T. L., Cheong, N. W. R., & Shak, K. P. Y. (2019). Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds. Ultrasonics Sonochemistry, 58. https://doi.org/10.1016/j.ultsonch.2019.05.015

Mao, Y., Gerrow, A., Ray, E., Perez, N. D., Edler, K., Wolf, B., & Binner, E. (2023). Lignin recovery from cocoa bean shell using microwave-assisted extraction and deep eutectic solvents. Bioresource Technology, 372. https://doi.org/10.1016/j.biortech.2023.128680

Holm, A., & Niklasson, R. (2018). The effect on wood components during soda pulping [Chalmers University of Technology]. http://publications.lib.chalmers.se/records/fulltext/254921/254921.pdf

Rajan, K., Berton, P., Rogers, R. D., & Shamshina, J. L. (2024). Is Kraft Pulping the Future of Biorefineries? A Perspective on the Sustainability of Lignocellulosic Product Development. Polymers, 16, 1–22. https://doi.org/10.3390/polym16233438

Sadeghifar, H., & Ragauskas, A. (2020). Lignin as a UV Light Blocker-A Review. Polymers, 12(5), 1–10. https://doi.org/10.3390/POLYM12051134

Antunes, F., Mota, I. F., Fangueiro, J. F., Lopes, G., Pintado, M., & Costa, P. S. (2023). From sugarcane to skin: Lignin as a multifunctional ingredient for cosmetic application. International Journal of Biological Macromolecules, 234(December 2022), 0–9. https://doi.org/10.1016/j.ijbiomac.2023.123592

Perera, U. P., Foo, M. L., & Chew, I. M. L. (2023). Synthesis and characterization of lignin nanoparticles isolated from oil palm empty fruit bunch and application in biocomposites. Sustainable Chemistry for Climate Action, 2(September 2022). https://doi.org/10.1016/j.scca.2022.100011

Lee, S. C., Yoo, E., Lee, S. H., & Won, K. (2020). Preparation and application of light-colored lignin nanoparticles for broad-spectrum sunscreens. Polymers, 12(3), 1–14. https://doi.org/10.3390/polym12030699

Pasma, S. A., Daik, R., Ramli, S., Maskat, M. Y., & Zulfakar, M. H. (2019). Enzymatic degradation of lignin extracted from oil palm empty fruit bunch using laccase and cutinase. BioResources, 14(4), 8879–8891. https://doi.org/10.15376/biores.14.4.8879-8891

Gordobil, O., Olaizola, P., Banales, J. M., & Labidi, J. (2020). Lignins from agroindustrial by-products as natural ingredients for cosmetics: Chemical structure and in vitro sunscreen and cytotoxic activities. Molecules, 25(1131), 1–16. https://doi.org/10.3390/molecules25051131

da Mata, A. K. A., Felipe, V. T. de A., Mazzetto, S. E., Lomonaco, D., & Avelino, F. (2022). Development of an eco-friendly acetosolv protocol for tuning the acetylation of coconut shell lignin: Structural, antioxidant, solubility and UV-blocking properties. International Journal of Biological Macromolecules, 211, 271–280. https://doi.org/10.1016/j.ijbiomac.2022.05.066

Bouza, R. J., Gu, Z., & Evans, J. H. (2016). Screening conditions for acid pretreatment and enzymatic hydrolysis of empty fruit bunches. Industrial Crops and Products, 84, 67–71. https://doi.org/10.1016/j.indcrop.2016.01.041

Medina, J. D. C., Woiciechowski, A., Filho, A. Z., Noseda, M. D., Kaur, B. S., & Soccol, C. R. (2015). Lignin preparation from oil palm empty fruit bunches by sequential acid/alkaline treatment – A biorefinery approach. Bioresource Technology, 194.

De, S., Mishra, S., Poonguzhali, E., Rajesh, M., & Tamilarasan, K. (2019). Fractionation and characterization of lignin from waste rice straw: Biomass surface chemical composition analysis. International Journal of Biological Macromolecules, 145, 795–803. https://doi.org/10.1016/j.ijbiomac.2019.10.068

Liu, Y., Zheng, J., Xiao, J., He, X., Zhang, K., Yuan, S., Peng, Z., Chen, Z., & Lin, X. (2019). Enhanced Enzymatic Hydrolysis and Lignin Extraction of Wheat Straw by Triethylbenzyl Ammonium Chloride/Lactic Acid-Based Deep Eutectic Solvent Pretreatment. ACS Omega, 4(22), 19829–19839. https://doi.org/10.1021/acsomega.9b02709

Li, T., Jin, X., Shen, X., Liu, H., Tong, R., Qiu, X., & Xu, J. (2024). Study on the Relationship between the Structure and Pyrolysis Characteristics of Lignin Isolated from Eucalyptus, Pine, and Rice Straw through the Use of Deep Eutectic Solvent. Molecul, 29(219), 1–16.

Kumar, A. K., Parikh, B. S., & Pravakar, M. (2016). Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environmental Science and Pollution Research, 23, 9265–9275. https://doi.org/10.1007/s11356-015-4780-4

Kohli, K., Katuwal, S., Biswas, A., & Sharma, B. K. (2020). Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents. Bioresource Technology, 303. https://doi.org/10.1016/j.biortech.2020.122897

Lyu, G., Li, T., Ji, X., Yang, G., Liu, Y., Lucia, L. A., & Chen, J. (2018). Characterization of lignin extracted from willow by deep eutectic solvent treatments. Polymers, 10(869), 1–11. https://doi.org/10.3390/polym10080869

Sari, N., Dwiatmoko, A. A., Sudiyarmanto, S., Saridewi, N., Aulia, F., & Rinaldi, N. (2018). A preliminary study on Ru/TiO2 as heterogeneous catalyst for the depolymerization of empty fruit bunch-derived organosolv lignin. AIP Conference Proceedings. https://doi.org/10.1063/1.5065013

Wang, W., & Lee, D.-J. (2021). Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: A review. Bioresource Technology, 339(125587).

Ning, P., Yang, G., Hu, L., Sun, J., Shi, L., Zhou, Y., Wang, Z., & Yang, J. (2021). Recent Advances in the Valorization of Plant Biomass. Biotechnology for Biofuels, 14(1), 1–22.

Saini, S., Kumar, N., Dudi, K., Chaudhary, G., Chaudhary, N., & Kumar, N. (2024). Alkali-based lignin extraction from lignocellulosic material and upgradation of residual pulp as bio-packaging material towards sustainable biomass utilization. Bioresource Technology Reports, 26(April), 101853. https://doi.org/10.1016/j.biteb.2024.101853

Tan, Y. T., Ngoh, G. C., & Chua, A. S. M. (2019). Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin. Bioresource Technology, 281, 359–366. https://doi.org/10.1016/j.biortech.2019.02.010

Perna, F. M., Vitale, P., & Capriati, V. (2019). Deep eutectic solvents and their applications as green solvents. Current Opinion in Green and Sustainable Chemistry, 21, 27–33. https://doi.org/10.1016/j.cogsc.2019.09.004

Gagosian, V. S. C., Claro, F. C., Schwarzer, A. C. de A. P., Cruz, J. V., Thá, E. L., Trindade, E. da S., Magalhães, W. L. E., Pestana, C. B., & Leme, D. M. (2022). The potential use of kraft lignins as natural ingredients for cosmetics: Evaluating their photoprotective activity and skin irritation potential. International Journal of Biological Macromolecules, 222(October), 2535–2544. https://doi.org/10.1016/j.ijbiomac.2022.10.037

Gutiérrez-Hernández, J. M., Escalante, A., Murillo-Vázquez, R. N., Delgado, E., González, F. J., & Toríz, G. (2016). Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection. Journal of Photochemistry and Photobiology B: Biology, 163, 156–161. https://doi.org/10.1016/j.jphotobiol.2016.08.027

Ratanasumarn, N., & Chitprasert, P. (2020). Cosmetic potential of lignin extracts from alkaline-treated sugarcane bagasse: Optimization of extraction conditions using response surface methodology. International Journal of Biological Macromolecules, 153, 138–145. https://doi.org/10.1016/j.ijbiomac.2020.02.328

Wu, Y., Qian, Y., Lou, H., Yang, D., & Qiu, X. (2019). Enhancing the Broad-Spectrum Adsorption of Lignin through Methoxyl Activation, Grafting Modification, and Reverse Self-Assembly [Research-article]. ACS Sustainable Chemistry and Engineering, 7(19), 15966–15973. https://doi.org/10.1021/acssuschemeng.9b02317

Komisarz, K., Majka, T. M., & Pielichowski, K. (2023). Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials. Materials, 16(16), 1–40. https://doi.org/10.3390/ma16010016

Duy, N. Van, Tsygankov, P. Y., & Menshutina, N. V. (2024). Facile Lignin Extraction and Application as Natural UV Blockers in Cosmetic Formulations. ChemEngineering, 8(69), 1–14. https://doi.org/10.3390/chemengineering8040069

Nitulescu, G., Lupuliasa, D., Adam-Dima, I., & Nitulescu, G. M. (2023). Ultraviolet Filters for Cosmetic Applications. Cosmetics, 10(4). https://doi.org/10.3390/cosmetics10040101

Zhang, Y., & Naebe, M. (2021). Lignin: A Review on Structure, Properties, and Applications as a Light-Colored UV Absorber. ACS Sustainable Chemistry and Engineering, 9(4), 1427–1442. https://doi.org/10.1021/acssuschemeng.0c06998

Marcin, S., & Aleksander, A. (2023). Acute toxicity assessment of nine organic UV filters using a set of biotests. Toxicological Research, 39(4), 649–667. https://doi.org/10.1007/s43188-023-00192-2

Narla, S., & Lim, H. W. (2020). Sunscreen: FDA regulation, and environmental and health impact. Photochemical and Photobiological Sciences, 19(1), 66–70. https://doi.org/10.1039/c9pp00366e

Siller, A., Blaszak, S. C., Lazar, M., & Olasz Harken, E. (2018). Update about the effects of the sunscreen ingredients oxybenzone and octinoxate on humans and the environment. Plastic Surgical Nursing, 38(4), 158–161. https://doi.org/10.1097/PSN.0000000000000244

Piccinino, D., Capecchi, E., Trifero, V., Tomaino, E., Marconi, C., Del Giudice, A., Galantini, L., Poponi, S., Ruggieri, A., & Saladino, R. (2022). Lignin Nanoparticles as Sustainable Photoprotective Carriers for Sunscreen Filters. ACS Omega, 7(42), 37070–37077. https://doi.org/10.1021/acsomega.2c02133

Kanani, N., Rochmat, A., Pahlevi, R., & Rohani, F. Y. (2017). Pengaruh Temperatur Terhadap Nilai Sun Protecting Factor (Spf) Pada Ekstrak Kunyit Putih Sebagai Bahan Pembuat Tabir Surya Menggunakan Pelarut Etil Asetat Dan Metanol. Jurnal Integrasi Proses, 6(3), 143–147. https://doi.org/10.36055/jip.v6i3.1450

Pramiastuti, O. (2019). Penentuan Nilai Spf (Sun Protection Factor) Ekstrak Dan Fraksi Daun Kecombrang (Etlingera Elatior) Secara in Vitro Menggunakan Metode Spektrofotometri. Parapemikir : Jurnal Ilmiah Farmasi, 8(1), 14–18. https://doi.org/10.30591/pjif.v8i1.1281

Girard, V., Fragnières, L., Chapuis, H., Brosse, N., Marchal-Heussler, L., Canilho, N., Parant, S., & Ziegler-Devin, I. (2024). The Impact of Lignin Biopolymer Sources, Isolation, and Size Reduction from the Macro- to Nanoscale on the Performances of Next-Generation Sunscreen. Polymers, 16, 2–18. https://doi.org/10.3390/polym16131901

Zhang, H., Liu, X., Fu, S., & Chen, Y. (2019). High-value utilization of kraft lignin: Color reduction and evaluation as sunscreen ingredient. International Journal of Biological Macromolecules, 133, 86–92. https://doi.org/10.1016/j.ijbiomac.2019.04.092

Gordobil, O., Herrera, R., Yahyaoui, M., Ilk, S., Kaya, M., & Labidi, J. (2018). Potential use of kraft and organosolv lignins as a natural additive for healthcare products. RSC Advances, 8, 24525–24533. https://doi.org/10.1039/c8ra02255k

Li, S. X., Li, M. F., Bian, J., Wu, X. F., Peng, F., & Ma, M. G. (2019). Preparation of organic acid lignin submicrometer particle as a natural broad-spectrum photo-protection agent. International Journal of Biological Macromolecules, 132, 836–843. https://doi.org/10.1016/j.ijbiomac.2019.03.177

Siregar, S. H., Nasution, H., Irma, W., Suwito, D., Rahmadani, A. R., & Han, S.-L. (2023). Synthesis and characterization of activated carbon from biomass waste reject pulp as an adsorbent for wastewater treatment . Acta Chimica Asiana, 6(2), 351–355. https://doi.org/10.29303/aca.v6i2.164

Pylypchuk, I. V, Karlsson, M., Lindén, P. A., Lindström, M. E., Elder, T., Sevastyanova, O., & Lawoko, M. (2023). Molecular understanding of the morphology and properties of lignin nanoparticles : unravelling the potential for tailored applications †. Green Chemistry, 25, 4415–4428. https://doi.org/10.1039/d3gc00703k

Lee, S. C., Tran, T. M. T., Choi, J. W., & Won, K. (2019). Lignin for white natural sunscreens. International Journal of Biological Macromolecules, 122, 549–554. https://doi.org/10.1016/j.ijbiomac.2018.10.184

Qiu, X., Yu, J., Yang, D., Mo, W., & Qian, Y. (2017). Whitening Sulfonated Alkali Lignin via H2O2/UV Radiation and Its Application As Dye Dispersant. ACS Sustainable Chemistry & Engineering, 6(1), 1055–1060.

Zhang, H., Bai, Y., Zhou, W., & Chen, F. (2017). Color Reduction of Sulfonated Eucalyptus Kraft Lignin. International Journal of Biological Macromolecules, 97, 201–208.

Zhang, H., Bai, Y., Zhou, W., & Chen, F. (2017). Color Reduction of Sulfonated Eucalyptus Kraft Lignin. International Journal of Biological Macromolecules, 97, 201–208.

Biomass waste as a photoprotective agent in the formulation of sunscreen preparation

Downloads

Published

2025-05-31

How to Cite

Vioniken, E. I., & Ratnasari, D. (2025). Biomass waste as a photoprotective agent in the formulation of sunscreen preparation. Acta Chimica Asiana, 8(1), 633–646. https://doi.org/10.29303/aca.v8i1.246

Issue

Section

Literature Review