Biological degradation of aflatoxin by microbe and enzyme: a review
DOI:
https://doi.org/10.29303/aca.v8i1.230Keywords:
microbe, enzyme, aflatoxin, biodegradationAbstract
Aflatoxins, produced by fungi like Aspergillus flavus and Aspergillus parasiticus, pose significant threats to food safety, impacting human and animal health while causing economic losses. Detoxifying aflatoxins is crucial to reducing contamination in food and feed. Enzymes and microorganisms present an eco-friendly and efficient solution for this purpose. This review highlights their roles in detoxification, focusing on bacteria, yeasts, and fungi that can degrade or bind aflatoxins, thereby lowering toxicity. Enzymes such as laccase, peroxidase, and reductase facilitate detoxification through oxidative and hydrolytic degradation. The efficiency of these methods depends on factors like pH, substrate availability, and temperature. Understanding the interactions between enzymes, microorganisms, and aflatoxins is essential for optimizing detoxification strategies. While promising, further research is needed to enhance their application in food safety.
Downloads
Metrics
References
Abrunhosa, L., Morales, H., Soares, C., Calado, T., Vila-Chã, A. S., Pereira, M., et al. (2016). A review of mycotoxins in food and feed products in Portugal and estimation of probable daily intakes. Critical Reviews in Food Science and Nutrition, 56(2), 249–265. https://doi.org/10.1080/10408398.2012.720619
Alshammari, N. I., Sulieman, A. M. E., & Albulaihed, Y. (2024). Aflatoxins occurrence, toxicity effects and degradation. In Microbial toxins in food systems: Causes, mechanisms, complications, and metabolism (pp. 349–360). Cham: Springer Nature Switzerland.
Nogueira, W. V., Tesser, M. B., & Buffon, J. G. (2024). Assessment of mycotoxins found in farmed fish feed. Aquaculture International, 1–57.
Frisvad, J. C., Møller, L. L., Larsen, T. O., Kumar, R., & Arnau, J. (2018). Safety of the fungal workhorses of industrial biotechnology: Update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Applied Microbiology and Biotechnology, 102, 9481–9515.
Omotayo, O. P., Omotayo, A. O., Mwanza, M., & Babalola, O. O. (2019). Prevalence of mycotoxins and their consequences on human health. Toxicological Research, 35, 1–7.
Demirel, G. Ö. K. S. U. N., & Doğan, N. N. (2023). Assessment of awareness and behavioral habits to reduce dietary exposure to mycotoxins. Journal of Faculty of Pharmacy of Ankara University, 47(3), 29–29.
Cinar, A., & Onbaşı, E. (2019). Mycotoxins: The hidden danger in foods. Mycotoxins Food Safety, 1–21.
Gruber-Dorninger, C., Jenkins, T., & Schatzmayr, G. (2019). Global mycotoxin occurrence in feed: A ten-year survey. Toxins, 11(7), 375.
Xiong, J., Xiong, L., Zhou, H., Liu, Y., & Wu, L. (2018). Occurrence of aflatoxin B1 in dairy cow feedstuff and aflatoxin M1 in UHT and pasteurized milk in central China. Food Control, 92, 386–390.
Lee, H. J., & Ryu, D. (2017). Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. Journal of Agricultural and Food Chemistry, 65(33), 7034–7051.
Sipos, P., Peles, F., Brassó, D. L., Béri, B., Pusztahelyi, T., Pócsi, I., & Győri, Z. (2021). Physical and chemical methods for reduction in aflatoxin content of feed and food. Toxins, 13(3). https://doi.org/10.3390/toxins13030204
Marshall, H., Meneely, J. P., Quinn, B., Zhao, Y., Bourke, P., Gilmore, B. F., … Elliott, C. T. (2020). Novel decontamination approaches and their potential application for post-harvest aflatoxin control. Trends in Food Science & Technology, 106, 489–496. https://doi.org/10.1016/j.tifs.2020.11.001
Liu, A., Zheng, Y., Liu, L., Chen, S., He, L., Ao, X., & Liu, S. (2020). Decontamination of aflatoxins by lactic acid bacteria. Current Microbiology, 77(12), 3821–3830. https://doi.org/10.1007/s00284-020-02220-y
Liu, L., Xie, M., & Wei, D. (2022). Biological detoxification of mycotoxins: Current status and future advances. International Journal of Molecular Sciences, 23(3), 1064.
Kumar, V., Bahuguna, A., Ramalingam, S., Dhakal, G., Shim, J. J., & Kim, M. (2022). Recent technological advances in mechanism, toxicity, and food perspectives of enzyme-mediated aflatoxin degradation. Critical Reviews in Food Science and Nutrition, 62(20), 5395–5412.
Katati, B., Kovács, S., Njapau, H., Kachapulula, P. W., Zwaan, B. J., van Diepeningen, A. D., & Schoustra, S. E. (2024). Maize Aspergillus section Flavi isolate diversity may be distinct from that of soil and subsequently the source of aflatoxin contamination. Mycotoxin Research, 1–17.
Rasheed, U., Cotty, P. J., Ain, Q. U., Wang, Y., & Liu, B. (2024). Efficacy of atoxigenic Aspergillus flavus from southern China as biocontrol agents against aflatoxin contamination in corn and peanuts. Pesticide Biochemistry and Physiology, 201, 105887.
Sudini, P., Srilakshmi, K. V. K., & Samuel, M. C. (2015). Detection of aflatoxigenic Aspergillus strains by culture and molecular methods: A critical review. African Journal of Microbiology Research, 9(8), 484–491.
Rai, J. P., Narware, J., Kumar, R. , Kumar, R., Pandey, P., Prakash, N., & Ghatak, A. (2024). Aflatoxin’s toll on health: Insights into human and animal impact.
Mannaa, M., & Kim, K. D. (2018). Effect of temperature and relative humidity on growth of Aspergillus and Penicillium spp. and biocontrol activity of Pseudomonas protegens AS15 against aflatoxigenic Aspergillus flavus in stored rice grains. Mycobiology, 46(3), 287–295.
Schmidt-Heydt, M., Abdel-Hadi, A., Magan, N., et al. (2009). Complex regulation of the aflatoxin biosynthesis gene cluster of Aspergillus flavus in relation to various combinations of water activity and temperature. International Journal of Food Microbiology, 135, 231–237.
Kumar, M., Kumar, H., Topno, R. K., & Kumar, J. (2019). Analysis of impact of anaerobic condition on the aflatoxin production in Aspergillus parasiticus Speare. Agricultural Science Digest-A Research Journal, 39(1), 75–78.
Matsushima, K., Yashiro, K., Hanya, Y., Abe, K., Yabe, K., & Hamasaki, T. (2001). Absence of aflatoxin biosynthesis in koji mold (Aspergillus sojae). Applied Microbiology and Biotechnology, 55, 771–776.
Awuchi, C. G., Ondari, E. N., Ogbonna, C. U., Upadhyay, A. K., Baran, K., Okpala, C. O. R., … Guiné, R. P. (2021). Mycotoxins affecting animals, foods, humans, and plants: Types, occurrence, toxicities, action mechanisms, prevention, and detoxification strategies—A revisit. Foods, 10(6), 1279.
Cary, J. W., Gilbert, M. K., Lebar, M. D., Majumdar, R., & Calvo, A. M. (2018). Aspergillus flavus secondary metabolites: More than just aflatoxins. Food Safety, 6(1), 7–32.
Pisoschi, A. M., Iordache, F., Stanca, L., Petcu, A. I., Purdoiu, L., Geicu, O. I., … Serban, A. I. (2023). Comprehensive overview and critical perspective on the analytical techniques applied to aflatoxin determination–A review paper. Microchemical Journal, 191, 108770.
Mallakian, S., Rezanezhad, R., Jalali, M., & Ghobadi, F. (2017). The effect of ozone gas on destruction and detoxification of aflatoxin. Bulletin de la Société Royale des Sciences de Liège, 86(1), 1–6.
Lalah, J. O., Omwoma, S., & Orony, D. A. (2019). Aflatoxin B1: Chemistry, environmental and diet sources and potential exposure in human in Kenya. Aflatoxin B1 occurrence, detection and toxicological effects, 1–33.
Zhang, K., & Banerjee, K. (2020). A review: Sample preparation and chromatographic technologies for detection of aflatoxins in foods. Toxins, 12(9), 539.
Kutasi, K., Recek, N., Zaplotnik, R., Mozetič, M., Krajnc, M., Gselman, P., & Primc, G. (2021). Approaches to inactivating aflatoxins—a review and challenges. International Journal of Molecular Sciences, 22(24), 13322.
Kumar, P., Mahato, D. K., Kamle, M., Mohanta, T. K., & Kang, S. G. (2017). Aflatoxins: A global concern for food safety, human health and their management. Frontiers in Microbiology, 7, 2170.
Danesh, N. M., Bostan, H. B., Abnous, K., Ramezani, M., Youssefi, K., Taghdisi, S. M., & Karimi, G. (2018). Ultrasensitive detection of aflatoxin B1 and its major metabolite aflatoxin M1 using aptasensors: A review. TrAC Trends in Analytical Chemistry, 99, 117–128.
Bernáldez, V., Cordoba, J. J., Magan, N., Peromingo, B., & Rodríguez, A. (2017). The influence of ecophysiological factors on growth, aflR gene expression and aflatoxin B1 production by a type strain of Aspergillus flavus. LWT - Food Science and Technology, 83, 283–291. https://doi.org/10.1016/j.lwt.2017.05.030
Gizachew, D., Chang, C. H., Szonyi, B., De La Torre, S., & Ting, W. E. (2019). Aflatoxin B1 (AFB1) production by Aspergillus flavus and Aspergillus parasiticus on ground Nyjer seeds: The effect of water activity and temperature. International Journal of Food Microbiology, 2(296), 8–13. https://doi.org/10.1016/j.ijfoodmicro.2019.02.017
Cinar Danso, J. K., Mbata, G. N., & Holton, R. L. (2024). Preharvest insect pests of peanuts and associated aflatoxin contaminants in Georgia, USA. Journal of Economic Entomology, 117(3), 993–1000.
Nugraha, A., Khotimah, K., & Rietjens, I. M. (2018). Risk assessment of aflatoxin B1 exposure from maize and peanut consumption in Indonesia using the margin of exposure and liver cancer risk estimation approaches. Food and Chemical Toxicology, 113, 134–144.
Panel, E. C., Schrenk, D., Bignami, M., Bodin, L., Chipman, J. K., Del Mazo, J., ... & Wallace, H. (2020). Risk assessment of aflatoxins in food.
Boadu, R. O., Dankyi, E., Apalangya, V. A., & Osei-Safo, D. (2024). Aflatoxins in maize and groundnuts on markets in Accra and consumers risk. Food Additives & Contaminants: Part B, 1–10.
Nadira, A. F., Rosita, J., Norhaizan, M., & Redzwan, S. M. (2017). Screening of aflatoxin M1 occurrence in selected milk and dairy products in Terengganu, Malaysia. Food Control, 73, 209–214. https://doi.org/10.1016/j.foodcont.2016.08.004
Zhao, Y., Wang, Q., Huang, J., Ma, L., Chen, Z., & Wang, F. (2018). Aflatoxin B1 and sterigmatocystin in wheat and wheat products from supermarkets in China. Food Additives & Contaminants: Part B, 11(1), 9–14. https://doi.org/10.1080/19393210.2017.1388295
Jeong, S. E., Chung, S. H., & Hong, S.-Y. (2019). Natural occurrence of aflatoxins and ochratoxin A in meju and soybean paste produced in South Korea. Applied Biological Chemistry, 62(1), 65. https://doi.org/10.1186/s13765-019-0472-y
Kujbida, P., Maia, P. P., Araújo, A. N. d., Mendes, L. D., Oliveira, M. L. d., Silva-Rocha, W. P., Queiroz de Brito, G., Chaves, G., & Martins, I. (2019). Risk assessment of the occurrence of aflatoxin and fungi in peanuts and cashew nuts. Brazilian Journal of Pharmaceutical Sciences, 55. https://doi.org/10.1590/s2175-97902019000118135
Demirhan, B., & Demirhan, B. (2021). The investigation of mycotoxins and Enterobacteriaceae of cereal-based baby foods marketed in Turkey. Foods, 10(12), 3040. https://doi.org/10.3390/foods10123040
Ismaiel, A. A., Tharwat, N. A., Sayed, M. A., & Gameh, S. A. (2020). Two-year survey on the seasonal incidence of aflatoxin M1 in traditional dairy products in Egypt. Journal of Food Science and Technology, 1–8. https://doi.org/10.1007/s13197-020-04254-3
Jeswal, P., & Kumar, D. (2015). Natural occurrence of toxigenic mycoflora and ochratoxin A & aflatoxins in commonly used spices from Bihar state (India). Journal of Environmental Science, Toxicology and Food Technology, 9(2), 50–55. https://doi.org/10.1155/2015/242486
Namulawa, V. T., Mutiga, S., Musimbi, F., Akello, S., Ngángá, F., Kago, L., Kyallo, M., Harvey, J., & Ghimire, S. (2020). Assessment of fungal contamination in fish feed from the Lake Victoria Basin, Uganda. Toxins, 12, 233.
Iswarawanti, D. N., Masloman, T. P. P., & HS, D. H. D. (2024). Exposure and knowledge on peanut aflatoxin B1 among urban consumer in Jakarta, Indonesia. AcTion: Aceh Nutrition Journal, 9(3), 559–567.
Ahmed, U. A., & Beshah, A. (2024). Aflatoxicosis in dairy cow: A review. Mathews Journal of Veterinary Science, 8(1), 1–10.
Tibebe, D., Kassaw, M., Mulugeta, M., Kassa, Y., Moges, Z., Yenealem, D., ... & Sheferaw, H. (2024). Assessment of aflatoxin contamination in roasted peanut samples from Gondar City, Ethiopia: Risk evaluation and health implications.
Yan, T., Zhang, Z., Zhang, Q., Tang, X., Wang, D., Hu, X., ... & Li, P. (2020). Simultaneous determination for A. flavus–metabolizing mycotoxins by time-resolved fluorescent microbead or gold-enabling test strip in agricultural products based on monoclonal antibodies. Microchimica Acta, 187, 1–8.
Jubeen, F., Batool, A., Naz, I., Sehar, S., Sadia, H., Hayat, A., & Kazi, M. (2024). Mycotoxins detection in food using advanced, sensitive and robust electrochemical platform of sensors: A review. Sensors and Actuators A: Physical, 115045.
Liu, S., Jiang, S., Yao, Z., & Liu, M. (2023). Aflatoxin detection technologies: Recent advances and future prospects. Environmental Science and Pollution Research, 30(33), 79627–79653.
Ouakhssase, A., Chahid, A., Choubbane, H., Aitmazirt, A., & Addi, E. A. (2019). Optimization and validation of a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the determination of aflatoxins in maize. Heliyon, 5(5), e01660.
Daliri, A., Shams-Ghahfarokhi, M., & Razzaghi-Abyaneh, M. (2023). Detection of Aflatoxin B1-producing Aspergillus flavus strains from pistachio orchards soil in Iran by multiplex polymerase chain reaction method. Current Medical Mycology, 9(3), 1.
Yilmaz, S., & Bag, H. (2022). Aflatoxin B1: Mechanism, oxidative stress and effects on animal health. Journal of Animal Biology and Veterinary, 2, 1–16.
Cao, W., Yu, P., Yang, K., & Cao, D. (2022). Aflatoxin B1: Metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicology Mechanisms and Methods, 32(6), 395–419.
Mgandu, F. A., Mirau, S., Nyerere, N., Mbega, E., & Chirove, F. (2024). Mathematical model to assess the impacts of aflatoxin contamination in crops, livestock and humans. Scientific African, 23, e01980.
Karaca, A., Yilmaz, S., Kaya, E., & Altun, S. (2021). The effect of lycopene on hepatotoxicity of aflatoxin B1 in rats. Archives of Physiology and Biochemistry, 127, 429–436.
McMillan, A., Renaud, J. B., Burgess, K. M. N., Orimadegun, A. E., Akinyinka, O. O., Allen, S. J., Miller, J. D., Reid, G., & Sumarah, M. W. (2018). Aflatoxin exposure in Nigerian children with severe acute malnutrition. Food and Chemical Toxicology, 111, 356–362. https://doi.org/10.1016/j.fct.2017.11.030
Güç, İ., Yalçin, E., Çavuşoğlu, K., & Acar, A. (2022). Toxicity mechanisms of aflatoxin M1 assisted with molecular docking and the toxicity-limiting role of trans-resveratrol. Scientific Reports, 12(1), 14471.
Dhakal, A., Hashmi, M. F., & Sbar, E. (2023, February 15). Aflatoxin toxicity. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK557781/
Sharma, R. K., & Parisi, S. (2017). Aflatoxins in Indian food products. In Toxins and Contaminants in Indian Food Products (pp. 13–30). Springer, Cham. https://doi.org/10.1007/978-3-319-48049-7_2
Chinaza, G. A., Erick, N. O., Hannington, T., Victory, S. I., & Ikechukwu, O. A. (2021). Aflatoxin B1 production, toxicity, mechanism of carcinogenicity, risk management, and regulations. Archives of Animal and Poultry Science, 1, 555–568.
Marchese, S., Polo, A., Ariano, A., Velotto, S., Costantini, S., & Severino, L. (2018). Aflatoxin B1 and M1: Biological properties and their involvement in cancer development. Toxins, 10(6), 214. https://doi.org/10.3390/toxins10060214
Savi, G. D., Piacentini, K. C., & Scussel, V. M. (2015). Ozone treatment efficiency in Aspergillus and Penicillium growth inhibition and mycotoxin degradation of stored wheat grains (Triticum aestivum L.). Journal of Food Processing and Preservation, 39, 940–948.
Loi, M., Renaud, J. B., Rosini, E., Pollegioni, L., Vignali, E., Haidukowski, M., Sumarah, M. W., Logrieco, A. F., & Mul, G. (2020). Enzymatic transformation of aflatoxin B1 by Rh_DypB peroxidase and characterization of the reaction products. Chemosphere, 250, 126296.
Jailili, M., & Jinap, S. (2012). Role of sodium hydrosulphite and pressure on the reduction of aflatoxins and ochratoxin A in black pepper. Food Control, 27, 11–15.
Hassan, F. F., & Hussein, H. Z. (2017). Detection of aflatoxin M1 in pasteurized canned milk and using of UV radiation for detoxification. International Journal of Advanced Chemical Engineering and Biological Sciences, 4, 130–133.
Mohamed, N. F., El-Dine, R. S. S., Kot, M. A. M., & Saber, A. (2015). Assessing the possible effect of gamma irradiation on the reduction of aflatoxin B1, and on the moisture content in some cereal grains. American Journal of Biomedical Sciences, 7, 33–39.
Mtega, M. M., Mgina, C. A., Kaale, E., Sempombe, S., & Kilulya, K. F. (2020). Occurrence of aflatoxins in maize and maize products from selected locations of Tanzania and the effects of cooking preparation processes on toxin levels. Tanzania Journal of Science, 46, 407–418.
Matumba, L., Van Poucke, C., Ediage, E. N., Jacobs, B., & De Saeger, S. (2015). Effectiveness of hand sorting, flotation/washing, dehulling and combinations thereof on the decontamination of mycotoxin-contaminated white maize. Food Additives and Contaminants: Part A, 32, 960–969.
Azam, K., Akhtar, S., Gong, Y. Y., Routledge, M. N., Ismail, A., Oliveira, C. A. F., Iqbal, S. Z., & Ali, H. (2021). Evaluation of the impact of activated carbon-based filtration system on the concentration of aflatoxins and selected heavy metals in roasted coffee. Food Control, 121, 107583.
Peña-Rodas, O., Martinez-Lopez, R., & Hernandez-Rauda, R. (2018). Occurrence of aflatoxin M1 in cow milk in El Salvador: Results from a two-year survey. Toxicology Reports, 5, 671–678.
Hamad, G. M., Zahran, E., & Hafez, E. E. (2017). The efficacy of bacteria and yeast strain and their combination to bind aflatoxin B1 and B2 in artificially contaminated infant food. Journal of Food Safety, 37, e12365.
Ismail, A., Riaz, M., Akhtar, S., Yoo, S. H., Park, S., Abid, M., & Ahmad, Z. (2017). Seasonal variation of aflatoxin B1 content in dairy feed. Journal of Animal Feed Science, 26, 33–37.
Bovo, F., Corassin, C. H., Rosim, R. E., & Oliveira, C. A. F. (2009). Efficiency of lactic acid bacteria strains for decontamination of aflatoxin M1 in phosphate buffer saline solution and in skimmed milk. Food and Bioprocess Technology, 6, 2230–2234.
Bunny, S. M., Umar, A., Bhatti, H. S., & Honey, S. F. (2024). Aflatoxin risk in the era of climatic change-a comprehensive review. CABI Agriculture and Bioscience, 5(1), 1-13.
Guan, Y., Chen, J., Nepovimova, E., Long, M., Wu, W., & Kuca, K. (2021). Aflatoxin Detoxification Using Microorganisms and Enzymes. Toxins, 13, 46.
Eiri, A., Niknejad, F., & Ardebili, A. (2022). Detoxification of AFB1 by Yeasts Isolates from Kefir and Traditional Kefir-Like Products. Medical Laboratory Journal, 16(4), 20-25.
Adeniji, A. A., Loots, D. T., & Babalola, O. O. (2019). Bacillus velezensis: Phylogeny, Useful Applications, and Avenues for Exploitation. Applied Microbiology and Biotechnology, 103, 3669–3682.
Wang, L., Wu, J., Liu, Z., Yutao, S., Jinqiu, L., Xiaofan, H., Peiqiang, M., Fengru, D., & Yiqun, D. (2019). Aflatoxin B1 degradation and detoxification by Escherichia coli CG1061 isolated from Chicken Cecum. Frontiers in Pharmacology, 9, 1548.
Zhang, W., Xue, B., Li, M., Mu, Y., Chen, Z., Li, J., & Shan, A. (2014). Screening a strain of Aspergillus niger and optimization of fermentation conditions for degradation of aflatoxin B1. Toxins, 6, 3157–3172.
Suresh, G., Cabezudo, I., Pulicharla, R., Cuprys, A., Rouissi, T., & Brar, S. K. (2020). Biodegradation of aflatoxin B1 with cell-free extracts of Trametes versicolor and Bacillus subtilis. Research in Veterinary Science, 133, 85–91.
Wang, Y., Jiang, L., Zhang, Y., Ran, R., Meng, X., & Liu, S. (2023). Research advances in the degradation of aflatoxin by lactic acid bacteria. Journal of Venomous Animals and Toxins including Tropical Diseases, 29, e20230029.
Taheur, F. B., Fedhila, K., Chaieb, K., Kouidhi, B., Bakhrouf, A., & Abrunhosa, L. (2017). Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. International Journal of Food Microbiology, 251, 1–7.
Taheur, F. B., Mansour, C., Jeddou, K. B., Machreki, Y., Kouidhi, B., Abdulhakim, J. A., & Chaieb, K. (2020). Aflatoxin B1 Degradation by Microorganisms Isolated from Kombucha Culture. Toxicon, 179, 76–83.
Watanakij, N., Visessanguan, W., & Petchkongkaew, A. (2020). Aflatoxin B1-degrading activity from Bacillus subtilis BCC 42005 isolated from fermented cereal products. Food Additives & Contaminants: Part A, 37(9), 1579–1589.
Qiu, T., Wang, H., Yang, Y., Yu, J., Ji, J., Sun, J., Zhang, S., & Sun, X. (2021). Exploration of biodegradation mechanism by AFB1-degrading strain Aspergillus niger FS10 and its Metabolic Feedback. Food Control, 121, 107609.
Li, J., Huang, J., Jin, Y., Wu, C., Shen, D., Zhang, S., & Zhou, R. (2018). Aflatoxin B1 degradation by salt tolerant Tetragenococcus halophilus CGMCC3792. Food and Chemical Toxicology, 121, 430–436.
Shetty, P. H., Hald, B., & Jespersen, L. (2007). Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. International Journal of Food Microbiology, 113(1), 41–46.
Kumar, V., Ahluwalia, V., Saran, S., Kumar, J., Patel, A. K., & Singhania, R. R. (2021). Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresource Technology, 323, 124566.
Xu, T., Xie, C., Yao, D., Zhou, C. Z., & Liu, J. (2017). Crystal structures of aflatoxin-oxidase from Armillariella tabescens reveal a dual activity enzyme. Biochemical and Biophysical Research Communications, 494, 621–625.
Alberts, J. F., Gelderblom, W. C. A., Botha, A., & Van Zyl, W. H. (2009). Degradation of aflatoxin B1 by fungal laccase enzymes. International Journal of Food Microbiology, 135, 47–52.
Zaid, A. M. A. (2017). Biodegradation of aflatoxin by peroxidase enzyme produced by local isolate of Pseudomonas sp. International Journal of Scientific Research and Management, 5, 7456–7467.
Li, C. H., Li, W. Y., Hsu, I. N., Liao, Y. Y., Yang, C. Y., Taylor, M. C., Liu, Y. F., Huang, W. H., Chang, H. H., Huang, H. L., et al. (2019). Recombinant aflatoxin-degrading F420H2-dependent reductase from Mycobacterium smegmatis protects mammalian cells from aflatoxin toxicity. Toxins, 11, 259.
Yehia, R. S. (2014). Aflatoxin Detoxification by Manganese Peroxidase Purified from Pleurotus ostreatus. Brazilian Journal of Microbiology, 45, 127–134.
Pereyra, M. G., Martínez, M. P., & Cavaglieri, L. R. (2019). Presence of aiiA homologue genes encoding for N-acyl homoserine lactone-degrading enzyme in aflatoxin B1-decontaminating Bacillus strains with potential use as feed additives. Food and Chemical Toxicology, 124, 316–323.
Tang, X., Cai, Y. F., Yu, X. M., & Zhou, W. W. (2023). Detoxification of aflatoxin B1 by Bacillus aryabhattai through conversion of double bond in terminal furan. Journal of Applied Microbiology, 134(9), lxad192.
Wang, J., Ogata, M., Hirai, H., & Kawagishi, H. (2011). Detoxification of aflatoxin B1 by manganese peroxidase from the white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiology Letters, 314(2), 164–169.
Guo, Y., Qin, X., Tang, Y., Ma, Q., Zhang, J., & Zhao, L. (2020). CotA laccase, a novel Aflatoxin Oxidase from Bacillus licheniformis, Transforms Aflatoxin B1 to aflatoxin Q1 and epi-aflatoxin Q1. Food Chemistry, 325, 126877.
Borgomano, S. (2015). Degradation of selected microbial aflatoxins from Aspergillus parasiticus by partial purified laccase from Coriolus hirsutus. PhD Dissertation, Institut National de la Recherche Scientifique, Université du Québec, Quebec City, QC, Canada.
Gong, A., Song, M., & Zhang, J. (2024). Current Strategies in Controlling Aspergillus flavus and Aflatoxins in Grains during Storage: A Review. Sustainability, 16(8), 3171.
Leslie, J. F., Bandyopadhyay, R., & Visconti, A. (Eds.). (2008). Mycotoxins: Detection Methods, Management, Public Health and Agricultural Trade. CABI.
Vural, B. M., & Akgüngör, E. S. (2019). Quantifying the trade and welfare effects of EU Aflatoxin Regulations on the dried fruit industry. German Journal of Agricultural Economics (GJAE), 68(2), 99–117.
Purnomo, J., Rahmianna, A. A., Ginting, E., Suratman, Elisabeth, D. A. A., & Sundari, T. (2023). The Pod Performance and Pod Yield of Peanut (Arachis hypogaea L.) Genotypes Grown Under Wet Condition and Their Microbial Quality Under Different Curing Times. Applied Ecology and Environmental Research, 21(2), 1157–1183.
Khachatryan, N., Zeddies, J., Schüle, H., & Khachatryan, A. (2005). Quantification of the economic impact of EU aflatoxins standards on developing and transition countries. Department for International Agricultural Trade and Food Security, Department for Analysis, Planning and Organization of Agricultural Production, Department for Computer Applications and Business Management in Agriculture University of Hohenheim, Stuttgart, Germany.
Chandra, P. (2021). Aflatoxins: Food safety, human health hazards and their prevention. In Aflatoxins-Occurrence, Detoxification, Determination and Health Risks. IntechOpen.
Rahman, M. A. H., Selamat, J., Shaari, K., Ahmad, S., & Samsudin, N. I. P. (2024). Extrolites from Non-Aflatoxigenic Aspergillus flavus: Potentials and Challenges as Emerging Control Strategy against Aspergillus flavus Infection and Aflatoxin Contamination. Current Opinion in Food Science, 101214.
Shabeer, S., Asad, S., Jamal, A., & Ali, A. (2022). Aflatoxin contamination, its impact and management strategies: an updated review. Toxins, 14(5), 307.
Kaale, L., Kimanya, M., Macha, I., & Mlalila, N. (2021). Aflatoxin contamination and recommendations to improve its control: A review. World Mycotoxin Journal, 14, 27–40.
Fortin, N. D. (2023). Global governance of food safety: the role of the FAO, WHO, and Codex Alimentarius in regulatory harmonization. In Research Handbook on International Food Law (pp. 227–242). Edward Elgar Publishing.
European Food Safety Authority (EFSA). (2020). Outcome of a public consultation on the draft risk assessment of aflatoxins in food. EFSA Journal, 17(3), 1798E.
Cai, Y., McLaughlin, M., & Zhang, K. (2020). Advancing the FDA/Office of Regulatory Affairs Mycotoxin Program: new analytical method approaches to addressing needs and challenges. Journal of AOAC International, 103(3), 705–709.
Singh, N. A., Tehri, N., Vashishth, A., & Kumar, P. (2023). Nano-Biosensors for the Monitoring of Toxic Contaminants in Food and its Products. In Mycotoxins in Food and Feed (pp. 429–448). CRC Press.
Liu, Y. (2022). Approaches to reduce Aspergillus flavus and aflatoxin contamination through utilization of agricultural by-products.
Wang, Y., Yang, L., Xu, J., Xin, F., & Jiang, L. (2023). Applications of synthetic microbial consortia in biological control of mycotoxins and fungi. Current Opinion in Food Science, 53, 101074.
Fang, J., Sheng, L., Ye, Y., Ji, J., Sun, J., Zhang, Y., & Sun, X. (2025). Recent advances in biosynthesis of mycotoxin-degrading enzymes and their applications in food and feed. Critical Reviews in Food Science and Nutrition, 65(8), 1465–1481.
Zhao, Z., Lu, M., Wang, N., Li, Y., Zhao, L., Zhang, Q., & Ma, L. (2023). Nanomaterials-assisted CRISPR/Cas detection for food safety: Advances, challenges and future prospects. TrAC Trends in Analytical Chemistry, 167, 117269.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Musyirna Nasution, Suryono Suryono, Amir Awaluddin, Yuli Haryani

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with ACA: Acta Chimica Asiana agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in ACA: Acta Chimica Asiana.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).