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Abstract: The synthesis of environmentally friendly-based chemicals such as 
solvent-free continues to be developed. A critical precursor in chemical synthesis 
is benzoic acid. This research developed a synthesis method by utilizing TiO2 
nanomaterials with different morphologies as photocatalysts, namely 
nanoparticles (NPs) and nanowires (NWs). Titanium (IV) oxide with nanowires 
morphology was synthesized by hydrothermal method under alkaline conditions. 
SEM, XRD, and FT-IR images confirmed the morphologies of TiO2 NPs and TiO2 
NWs. Photocatalytic performance in converting benzaldehyde to benzoic acid 
showed a significant difference of up to 38% using TiO2 NPs and 94% using TiO2 
NWs. 
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INTRODUCTION 

The oxidation of carbonyl compounds plays an essential 
role in synthesizing organic compounds because 
carbonyl compounds are widely used as intermediates 
in the laboratory and industry. Benzoic acid is a 
chemical commonly used in various fields, not only as a 
precursor but also as an additive in multiple industries 
and manufacturers. Benzoic acid is generally obtained 
from the oxidation of benzene derivatives using 
permanganate and chromate. Another study using 
Na2WO4 and H2O2 got the highest yield value of 81%, 
and involving a surfactant in the form of beta-
cyclodextrins obtained a yield value of 90% [1]. The use 
of a cyclo-[(s)-His-(s)-phe] complex catalyst has been 
used in oxidizing benzaldehyde to obtain a specific 
conformation of benzoic acid derivatives [2]. However, 
oxidation involving many oxidizers, activators, and 
surfactants resulted in an inefficient process of isolating 
the synthesized products. In addition, excessive use of 
supporting chemicals will cause waste that can pollute 

the environment. 
 

Experiments on organic synthesis for oxidation 
reactions using heterogeneous catalysts have begun to 
be developed to increase efficiency both in separation 
and yield value. Heterogeneous catalyst candidates 
were initially created using metals such as Gold (Au) [3], 
Osmium (Os) [4], Rhenium(Re) [5], Platinum(Pt) [6], 
and transition metals such as Cobalt(Co) and Copper 
(Cu) [4]. Even though the yield obtained is relatively 
high, the reaction using this noble metal is generally 
carried out under particular conditions related to the 
pressure and atmosphere used. Other heterogeneous 
catalysts developed are derived from synthetic and 
modified zeolite groups and metal oxides. Some of 
them, namely Fe/SBA-15 [7], Ce0.3Co0.7Fe2O4[8], 
Co3O4@ZSM-5 [9], Co-ZSM-5[10], and Co-ZSM-11 
[11], have been successfully used in the synthesis of 
organic chemistry for oxidation reactions. But even so, 
the main weakness of using these catalysts is that 
almost all processes still require solvents, including 
acetone, acetonitrile, methanol, and 1,4 dioxane, which 
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can still be environmental pollutants. A similar catalytic 
reaction experiment without solvent using Co/ZSM-5 
catalyst successfully converted styrene into benzoic 
acid with a yield of up to 100% under 2 MPa pressure 
under a saturated O2 atmosphere [12]. However, the 
atmospheric conditions still need to be carried out on a 
large scale, and the Co/ZSM-5 catalyst type is still 
relatively expensive. 

Titanium (IV) oxide is still the most popular 
semiconductor developed as a photocatalyst material. 
TiO2 has various advantages over other semiconductor 
oxides, including a band gap that is easily modifiable, 
good chemical stability, and easy to synthesize with 
environmentally friendly methods such as 
hydrothermal. Previous research also explained that 
TiO2, with certain physical properties as a photocatalyst, 
can degrade and oxidize specifically organic materials 
such as benzyl alcohol [13]. TiO2 films modified with 
sulfate also show spontaneous photocatalytic activity 
on the surface of TiO2 films in oxidizing acetaldehyde to 
formic acid with significant yields [14]. In addition to 
doping on TiO2, morphological modifications also show 
differences in photocatalytic activity. TiO2 NPs 
(nanoparticles) show a fast charge recombination 
process compared to TiO2 NWs (nanowires)[15], which 
means that if the generated photoelectron is not 
immediately captured by the subtract, it will reduce the 
effectiveness of the TiO2 NPs catalyst. On the other 
hand, under certain conditions, TiO2 NWs have another 
potential due to the slow charge recombination. 
Therefore, this study studied the photocatalytic activity 
of TiO2 NPs and TiO2 NWs in oxidizing benzaldehyde at 
ambient conditions. 

MATERIALS AND METHODS 

Material 

The materials used in this study are TiO2 NPs (Merck 
Millipore), KOH (Merck Millipore), and Benzaldehyde 
(Sigma-Aldrich) with a purity of 98% and a density of 
1.04 g/L (25 oC). 

Synthesis of TiO2 NWs 

The synthesis of TiO2 NWs using the hydrothermal 
method was adopted from the process in Ref. [16], 
which was modified using a sonication device. First, 
TiO2 NPs were mixed with KOH (10 M) in a ratio of 1: 

10. The mixture was stirred for at least 30 minutes to 
obtain a homogeneous suspension. Next, the 
suspension obtained was sonicated for two hours and 
put into an autoclave at 200°C for 24 hours. Finally, the 
filtrate and substrate were separated using a centrifuge 
to obtain TiO2 NWs. 

Performance test of TiO2 as a photocatalyst. 

The performance of TiO2 NPs and NWs (0.1 g) as 
photocatalysts were tested by oxidizing benzaldehyde 
(25 mL) under 360 nm UV light and oxygen atmosphere 
for 60 minutes, expected to become benzoic acid. 
Fourier Transform Infra-Red investigated the reaction 
products. 

Material Characterization 

The morphology of TiO2 NPs and TiO2 NWs was 
confirmed using a scanning electron microscope (SEM). 
At the same time, the crystal systems of both samples 
were characterized by powder X-ray diffraction (XRD). 
The photocatalytic performance of TiO2 in converting 
benzaldehyde to benzoic acid was performed by Fourier 
Transform Infra-Red (FTIR). 

RESULTS AND DISCUSSION 

The change in morphology of TiO2 from nano 
spherical to nanowires was clearly observed through 
SEM images. The precursor used is a nano spherical 
(Fig. 1a and 1b) with a fairly uniform distribution of 
particle size and shape with an average diameter of 
54.35 nm. The size of the TiO2 precursor used is 
somewhat larger than generally used, which is in the 
range of 25-30 nm, but the size of the diameter of these 
TiO2 NPs is smaller than the results of the synthesis 
carried out by the bottom-up method with titanium 
isopropoxide precursor [17]. Morphological 
transformations carried out by the hydrothermal method 
showed the shape of nanowires with a fairly uniform 
distribution (Fig. 1c and 1d) with an average diameter of 
35.80 nm. However, it was clearly observed that the 
threads of TiO2 began to agglomerate so that the TiO2 
strands looked chaotic, and the surface morphology still 
looked rough. It is likely due to a relatively lower 
temperature that causes a decrease in the crystallinity 
of TiO2 NWs [18].
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Figure 1. SEM images of TiO2 NPs (a and b) and TiO2 NWs (c and d). 

The decrease in crystallinity from TiO2 NPs to TiO2 NWs 
was confirmed through x-ray diffractograms (Fig. 2). 
Diffractogram TiO2 NPs confirmed through JCPDS No. 
01-084-1285 in the form of anatase crystals synthetic 
indicated from the peak with the highest intensity at 25.3 
which is the distance of the spacing d101, where it is by 
the standard precursor used[19]. Whereas in the 
diffractogram pattern of TiO2 NWs, it is still clearly 
confirmed anatase shape, corresponding to TiO2 NPs. 
However, a clear difference is seen in the pattern 
diffractogram TiO2 NWs crystalline peaks have a large-
half peak width and tend to shift towards a smaller 
angle. It is due to a decrease in the level of crystallinity 
that is quite contrasting [20].  

The characteristics of TiO2 NPs and TiO2 NWs 
are also seen based on the FT-IR spectra (Fig 3.), 
where it can be seen that there are no contrasting 
features between the two samples, namely in the range 
of wave numbers 2800-3600 cm-1, which is a 
vibrational feature of stretching O-H due to water 
molecules adsorbed on the surface of TiO2 and at wave 
numbers around 1629 cm-1 which is Ti-OH [21]. The 
differences that arise from the two samples are 
observed in the range of 500-900 cm-1, which is 
characteristic of rigid ionic bonds, where TiO2 NPs show 

a stronger absorbance than TiO2 NWs due to an 
increasingly less ordered structure [22]. 
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Figure 2. Powder XRD pattern of TiO2 NPs (black line) 
and TiO2 NWs (red line). 
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Figure 3. FT-IR Spectra of TiO2 NPs (black line) and 
TiO2 NWs (red line). 

 

The photocatalytic performance of TiO2 NPs and TiO2 
NWs in oxidizing benzaldehyde to benzoic acid was 
investigated by FT-IR (Fig 4.). All three samples showed 
major absorption regions in the range of 4000-2000 cm-
1 and 1800-500 cm-1. In the low-frequency region, the 
three samples showed the same features: absorption 
due to the vibrations of C=O (1720 cm-1), C=C aromatic 
(1589 cm-1), and C-H aromatic bonds. Contrasting 
feature changes appear in the 3850-2250 cm-1 region 
of the three samples, where the absorption in this region 
is due to O-H vibrations. It strongly indicates the 
transformation of aldehyde functional groups into 
carboxylate groups. By considering the Beer-Lambert 
law (Eq 1), where the absorbance (A) is proportional to 
the logarithmic 1/Transmittance (T) and proportional to 
the concentration of the molar attenuation coefficient (ε) 
and the distance of the light source (b) which is identical 
because it is done on an identical system. 

𝐴 =  log
1

𝑇
 =  𝜀𝑏𝐶 ………………….. Eq 1 
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Figure 4. FT-IR Spectra of Benzaldehydes after UV (360 nm) irradiation without catalyst (black line), with TiO2 
NPs (red line) and TiO2 NWs (blue line) catalyst.

In other words, the absorption value in this region will 
be proportional to the concentration of benzoic acid 
formed. It can be seen that the oxidation of 
benzaldehyde without using a catalyst does not show 
significant absorption (~8%) in this region, which means 
that benzaldehyde cannot be oxidized using only UV 
irradiation (360 nm). In contrast, benzaldehyde oxidized 
with the addition of TiO2 NPs catalyst gives a maximum 
absorption value of up to ~38%. Most interestingly, 
benzaldehyde oxidized using TiO2 NWs catalyst gave a 
significant maximum uptake value of ~94%. 

Based on experiments and considering the existing 
theory, a mechanism of oxidation of benzaldehyde 
molecules can be proposed, as seen in Fig. 5. The 

proposed mechanism is a radical oxidation reaction, 
including the initiation, propagation, and termination 
stages (Fig 5). The initiation stage begins with the 
excitation of electrons from the valence band to the 
conduction band of TiO2. The active electrons are 
expected to collide with the chemisorbed benzaldehyde 
molecules on the surface of TiO2 [23]. Then, the 
molecules would be converted into benzaldehyde 
radical molecules, which are expected to associate with 
oxygen molecules to form benzaldehyde-oxygen 
radicals [24], [25].  

The propagation stage starts from the benzaldehyde-
oxygen radical complex that collides with other 
benzaldehyde molecules, producing benzoic acid and 
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benzoate radicals. Then ends with the termination 
stage, namely, the benzoate radical is stabilized on the 
hole state of TiO2 to produce benzoate ions. The 
contrasting difference in photocatalytic activity values 
between TiO2 NPs and TiO2 NWs occurs because 
morphological differences affect the lifetime of active 
species in the reaction. The nano spherical shape of 
TiO2 allows charge recombinant towards the particle 

center faster than the morphology of the nanowire [15]. 
Nanowires' shape does not reduce the surface area 
significantly and allows charge recombinant slower so 
that the oxidation process by the active species is more 
optimal. 

 

 

Figure 5. Proposed mechanism of oxidation of benzaldehyde to benzoic acid 

CONCLUSION 

TiO2-derived nanowires (NWs) were successfully 
synthesized by a simple hydrothermal method under 
alkaline conditions. The success of this morphological 
transformation is confirmed by SEM images that show 
TiO2 NPs in nano spherical form with an average 
diameter of around 54.35 nm transformed into TiO2 
NWs with an average diameter of around 35.80 nm. The 
analysis of XRD powder diffractogram patterns also 
showed the d-spacing peaks of anatase TiO2 crystals in 
both samples, where TiO2 NWs decreased crystallinity. 
While characterization conducted through FT-IR on 
TiO2 NPs and TiO2 NWs showed no significant 
difference in spectra features. The most interesting 
result is that the conversion value of benzaldehyde to 
benzoic acid through photocatalytic reactions shows a 
significant difference, namely 38% for using TiO2 NPs 
catalyst and 94% for using TiO2 NWs. It confirms the 

indication of charge-recombinant slowing down in NWs 
morphology compared to NPs. 
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