

RESEARCH PAPER

Highly highly photocatalytic performance of TiO₂ nanowires in the conversion of benzaldehydes to benzoic acid

Sudirman*^[a], Lalu Dimas Pratama Atmaja^[a], Ari Jamhari Pratama^[a], Emmy Yuanita^[a], Ni Komang Tri Dharmayani^[a], Maria Ulfa^[a], Romel Hidayat^[b]

[a]	Department of Chemistry, Institution Faculty of Mathematic and Natural Science, University of Mataram	
	JI. Majapahit No.62 Mataram West Nusa Tenggara 83125 Indonesia	
	E-mail: sudirman28@unram.ac.id	

[b] Department of Nanotechnology and Advanced Material Engineering, Sejong University Seoul, 05006 Republic of Korea

DOIs: 10.29303/aca.v6i2.160

Article info:	Abstract: The synthesis of environmentally friendly-based chemicals such as
Received 10/04/2023	solvent-free continues to be developed. A critical precursor in chemical synthesis is benzoic acid. This research developed a synthesis method by utilizing TiO ₂
Revised 30/05/2023	nanomaterials with different morphologies as photocatalysts, namely nanoparticles (NPs) and nanowires (NWs). Titanium (IV) oxide with nanowires
Accepted 31/05/2023	morphology was synthesized by hydrothermal method under alkaline conditions. SEM, XRD, and FT-IR images confirmed the morphologies of TiO ₂ NPs and TiO ₂
Available online 4`/06/2023	NWs. Photocatalytic performance in converting benzaldehyde to benzoic acid showed a significant difference of up to 38% using TiO_2 NPs and 94% using TiO_2 NWs.
	Keywords: nanomaterials, photocatalyst, TiO ₂ NPs, TiO ₂ NWs, benzaldehydes, benzoic acid.

Citation: Sudirman, S., Atmaja, L. D. P., Jamhari Pratama, A., Yuanita, E., Dharmayani, N. K. T., Ulfa, M., & Hidayat, R. . (2023). Highly photocatalytic performance of TiO2 nanowires in conversion of benzaldehydes to benzoic acid. *Acta Chimica Asiana*, 6(2), 315–321. https://doi.org/10.29303/aca.v6i2.160

INTRODUCTION

The oxidation of carbonyl compounds plays an essential role in synthesizing organic compounds because carbonyl compounds are widely used as intermediates in the laboratory and industry. Benzoic acid is a chemical commonly used in various fields, not only as a precursor but also as an additive in multiple industries and manufacturers. Benzoic acid is generally obtained from the oxidation of benzene derivatives using permanganate and chromate. Another study using Na_2WO_4 and H_2O_2 got the highest yield value of 81%, and involving a surfactant in the form of betacyclodextrins obtained a yield value of 90% [1]. The use of a cyclo-[(s)-His-(s)-phe] complex catalyst has been used in oxidizing benzaldehyde to obtain a specific conformation of benzoic acid derivatives [2]. However, oxidation involving many oxidizers, activators, and surfactants resulted in an inefficient process of isolating the synthesized products. In addition, excessive use of supporting chemicals will cause waste that can pollute

the environment.

Experiments on organic synthesis for oxidation reactions using heterogeneous catalysts have begun to be developed to increase efficiency both in separation and yield value. Heterogeneous catalyst candidates were initially created using metals such as Gold (Au) [3], Osmium (Os) [4], Rhenium(Re) [5], Platinum(Pt) [6], and transition metals such as Cobalt(Co) and Copper (Cu) [4]. Even though the yield obtained is relatively high, the reaction using this noble metal is generally carried out under particular conditions related to the pressure and atmosphere used. Other heterogeneous catalysts developed are derived from synthetic and modified zeolite groups and metal oxides. Some of them, namely Fe/SBA-15 [7], Ce0.3Co0.7Fe2O4[8], Co3O4@ZSM-5 [9], Co-ZSM-5[10], and Co-ZSM-11 [11], have been successfully used in the synthesis of organic chemistry for oxidation reactions. But even so, the main weakness of using these catalysts is that almost all processes still require solvents, including acetone, acetonitrile, methanol, and 1,4 dioxane, which

321

can still be environmental pollutants. A similar catalytic reaction experiment without solvent using Co/ZSM-5 catalyst successfully converted styrene into benzoic acid with a yield of up to 100% under 2 MPa pressure under a saturated O2 atmosphere [12]. However, the atmospheric conditions still need to be carried out on a large scale, and the Co/ZSM-5 catalyst type is still relatively expensive.

Titanium (IV) oxide is still the most popular semiconductor developed as a photocatalyst material. TiO₂ has various advantages over other semiconductor oxides, including a band gap that is easily modifiable, good chemical stability, and easy to synthesize with environmentally friendly methods such as hydrothermal. Previous research also explained that TiO₂, with certain physical properties as a photocatalyst, can degrade and oxidize specifically organic materials such as benzyl alcohol [13]. TiO₂ films modified with sulfate also show spontaneous photocatalytic activity on the surface of TiO₂ films in oxidizing acetaldehyde to formic acid with significant yields [14]. In addition to doping on TiO₂, morphological modifications also show differences in photocatalytic activity. TiO2 NPs (nanoparticles) show a fast charge recombination process compared to TiO₂ NWs (nanowires)[15], which means that if the generated photoelectron is not immediately captured by the subtract, it will reduce the effectiveness of the TiO₂ NPs catalyst. On the other hand, under certain conditions, TiO₂ NWs have another potential due to the slow charge recombination. Therefore, this study studied the photocatalytic activity of TiO₂ NPs and TiO₂ NWs in oxidizing benzaldehyde at ambient conditions.

MATERIALS AND METHODS

Material

The materials used in this study are TiO_2 NPs (Merck Millipore), KOH (Merck Millipore), and Benzaldehyde (Sigma-Aldrich) with a purity of 98% and a density of 1.04 g/L (25 oC).

Synthesis of TiO₂ NWs

The synthesis of TiO_2 NWs using the hydrothermal method was adopted from the process in Ref. [16], which was modified using a sonication device. First, TiO_2 NPs were mixed with KOH (10 M) in a ratio of 1:

10. The mixture was stirred for at least 30 minutes to obtain a homogeneous suspension. Next, the suspension obtained was sonicated for two hours and put into an autoclave at 200°C for 24 hours. Finally, the filtrate and substrate were separated using a centrifuge to obtain TiO_2 NWs.

Performance test of TiO₂ as a photocatalyst.

The performance of TiO_2 NPs and NWs (0.1 g) as photocatalysts were tested by oxidizing benzaldehyde (25 mL) under 360 nm UV light and oxygen atmosphere for 60 minutes, expected to become benzoic acid. Fourier Transform Infra-Red investigated the reaction products.

Material Characterization

The morphology of TiO_2 NPs and TiO_2 NWs was confirmed using a scanning electron microscope (SEM). At the same time, the crystal systems of both samples were characterized by powder X-ray diffraction (XRD). The photocatalytic performance of TiO2 in converting benzaldehyde to benzoic acid was performed by Fourier Transform Infra-Red (FTIR).

RESULTS AND DISCUSSION

The change in morphology of TiO₂ from nano spherical to nanowires was clearly observed through SEM images. The precursor used is a nano spherical (Fig. 1a and 1b) with a fairly uniform distribution of particle size and shape with an average diameter of 54.35 nm. The size of the TiO₂ precursor used is somewhat larger than generally used, which is in the range of 25-30 nm, but the size of the diameter of these TiO₂ NPs is smaller than the results of the synthesis carried out by the bottom-up method with titanium isopropoxide precursor [17]. Morphological transformations carried out by the hydrothermal method showed the shape of nanowires with a fairly uniform distribution (Fig. 1c and 1d) with an average diameter of 35.80 nm. However, it was clearly observed that the threads of TiO₂ began to agglomerate so that the TiO₂ strands looked chaotic, and the surface morphology still looked rough. It is likely due to a relatively lower temperature that causes a decrease in the crystallinity of TiO₂ NWs [18].

Figure 1. SEM images of TiO₂ NPs (a and b) and TiO₂ NWs (c and d).

The decrease in crystallinity from TiO₂ NPs to TiO₂ NWs was confirmed through x-ray diffractograms (Fig. 2). Diffractogram TiO2 NPs confirmed through JCPDS No. 01-084-1285 in the form of anatase crystals synthetic indicated from the peak with the highest intensity at 25.3 which is the distance of the spacing d101, where it is by the standard precursor used[19]. Whereas in the diffractogram pattern of TiO₂ NWs, it is still clearly confirmed anatase shape, corresponding to TiO₂ NPs. However, a clear difference is seen in the pattern diffractogram TiO₂ NWs crystalline peaks have a large-half peak width and tend to shift towards a smaller angle. It is due to a decrease in the level of crystallinity that is quite contrasting [20].

The characteristics of TiO_2 NPs and TiO_2 NWs are also seen based on the FT-IR spectra (Fig 3.), where it can be seen that there are no contrasting features between the two samples, namely in the range of wave numbers 2800-3600 cm-1, which is a vibrational feature of stretching O-H due to water molecules adsorbed on the surface of TiO_2 and at wave numbers around 1629 cm-1 which is Ti-OH [21]. The differences that arise from the two samples are observed in the range of 500-900 cm-1, which is characteristic of rigid ionic bonds, where TiO_2 NPs show a stronger absorbance than TiO₂ NWs due to an increasingly less ordered structure [22].

Figure 2. Powder XRD pattern of TiO_2 NPs (black line) and TiO_2 NWs (red line).

Figure 3. FT-IR Spectra of TiO₂ NPs (black line) and TiO₂ NWs (red line).

The photocatalytic performance of TiO₂ NPs and TiO₂ NWs in oxidizing benzaldehyde to benzoic acid was investigated by FT-IR (Fig 4.). All three samples showed major absorption regions in the range of 4000-2000 cm-1 and 1800-500 cm-1. In the low-frequency region, the three samples showed the same features: absorption due to the vibrations of C=O (1720 cm-1), C=C aromatic (1589 cm-1), and C-H aromatic bonds. Contrasting feature changes appear in the 3850-2250 cm-1 region of the three samples, where the absorption in this region is due to O-H vibrations. It strongly indicates the transformation of aldehyde functional groups into carboxylate groups. By considering the Beer-Lambert law (Eq 1), where the absorbance (A) is proportional to the logarithmic 1/Transmittance (T) and proportional to the concentration of the molar attenuation coefficient (ϵ) and the distance of the light source (b) which is identical because it is done on an identical system.

$$A = \log \frac{1}{T} = \varepsilon bC$$
 Eq 1

Figure 4. FT-IR Spectra of Benzaldehydes after UV (360 nm) irradiation without catalyst (black line), with TiO₂ NPs (red line) and TiO₂ NWs (blue line) catalyst.

In other words, the absorption value in this region will be proportional to the concentration of benzoic acid formed. It can be seen that the oxidation of benzaldehyde without using a catalyst does not show significant absorption (~8%) in this region, which means that benzaldehyde cannot be oxidized using only UV irradiation (360 nm). In contrast, benzaldehyde oxidized with the addition of TiO₂ NPs catalyst gives a maximum absorption value of up to ~38%. Most interestingly, benzaldehyde oxidized using TiO₂ NWs catalyst gave a significant maximum uptake value of ~94%.

Based on experiments and considering the existing theory, a mechanism of oxidation of benzaldehyde molecules can be proposed, as seen in Fig. 5. The proposed mechanism is a radical oxidation reaction, including the initiation, propagation, and termination stages (Fig 5). The initiation stage begins with the excitation of electrons from the valence band to the conduction band of TiO₂. The active electrons are expected to collide with the chemisorbed benzaldehyde molecules on the surface of TiO₂ [23]. Then, the molecules would be converted into benzaldehyde radical molecules, which are expected to associate with oxygen molecules to form benzaldehyde-oxygen radicals [24], [25].

The propagation stage starts from the benzaldehydeoxygen radical complex that collides with other benzaldehyde molecules, producing benzoic acid and benzoate radicals. Then ends with the termination stage, namely, the benzoate radical is stabilized on the hole state of TiO_2 to produce benzoate ions. The contrasting difference in photocatalytic activity values between TiO_2 NPs and TiO_2 NWs occurs because morphological differences affect the lifetime of active species in the reaction. The nano spherical shape of TiO_2 allows charge recombinant towards the particle

center faster than the morphology of the nanowire [15]. Nanowires' shape does not reduce the surface area significantly and allows charge recombinant slower so that the oxidation process by the active species is more optimal.

Figure 5. Proposed mechanism of oxidation of benzaldehyde to benzoic acid

CONCLUSION

TiO₂-derived nanowires (NWs) were successfully synthesized by a simple hydrothermal method under alkaline conditions. The success of this morphological transformation is confirmed by SEM images that show TiO₂ NPs in nano spherical form with an average diameter of around 54.35 nm transformed into TiO₂ NWs with an average diameter of around 35.80 nm. The analysis of XRD powder diffractogram patterns also showed the d-spacing peaks of anatase TiO2 crystals in both samples, where TiO₂ NWs decreased crystallinity. While characterization conducted through FT-IR on TiO₂ NPs and TiO₂ NWs showed no significant difference in spectra features. The most interesting result is that the conversion value of benzaldehyde to benzoic acid through photocatalytic reactions shows a significant difference, namely 38% for using TiO₂ NPs catalyst and 94% for using TiO2 NWs. It confirms the indication of charge-recombinant slowing down in NWs morphology compared to NPs.

ACKNOWLEDGEMENTS

This research was conducted at the Advanced Chemistry Laboratory of the Faculty of Mathematics and Natural Sciences, University of Mataram, from PNBP funds of the Faculty of Mathematics and Natural Sciences in 2023 through a selection conducted by the Institute for Research and Community Service (LPPM), University of Mataram.

REFERENCES

 H. Yan, C. Liu, and G. Luo, "Oxidation of benzaldehyde to benzoic acid," *Pet Sci Technol*, vol. 23, no. 11–12, pp. 1511–1516, Nov. 2005, doi: 10.1081/LFT-200041057.

- [2] D. J. P. Hogg, M. North, R. B. Stokoe, and W. G. Teasdale, "The Oxidation of Benzaldehyde to Benzoic Acid Catalysed by Cycle-[(S)-His-(S)-Phe], and its Implications for the Catalytic Asymmetric Addition of HCN to Aldehydes," 1993.
- [3] X. Deng and C. M. Friend, "Selective oxidation of styrene on an oxygen-covered Au(111)," *J Am Chem Soc*, vol. 127, no. 49, pp. 17178–17179, Dec. 2005, doi: 10.1021/ja0557031.
- [4] B. Mutsuo Kodama *et al.*, "Stability Constants of Metal Ions Complexes," The Chemical Society, 1967.
- [5] Z. Zhu and J. H. Espenson, "Articles Oxidation of Alkynes by Hydrogen Peroxide Catalyzed by Methylrhenium Trioxide," 1995.
- [6] P. Chowdhury, G. Malekshoar, M. B. Ray, J. Zhu, and A. K. Ray, "Sacrificial hydrogen generation from formaldehyde with Pt/TiO2 photocatalyst in solar radiation," *Ind Eng Chem Res*, vol. 52, no. 14, pp. 5023–5029, Apr. 2013, doi: 10.1021/ie3029976.
- [7] L. X. Zhang, Z. le Hua, X. P. Dong, L. Li, H. R. Chen, and J. L. Shi, "Preparation of highly ordered Fe-SBA-15 by physical-vapor-infiltration and their application to liquid phase s oxidation of styrene," *J Mol Catal A Ch* 268, no. 1–2, pp. 155–162, May 20(10.1016/j.molcata.2006.12.027.
- [8] M. Dhiman and S. Singhal, "ScienceDirect Enhanced catalytic properties of rare-earth substituted cobalt ferrites fabricated by sol-gel auto-combustion route," 2019. [Online]. Available: www.sciencedirect.com
- [9] J. Liu, Z. Wang, P. Jian, and R. Jian, "Highly selective oxidation of styrene to benzaldehyde over a tailor-made cobalt oxide encapsulated zeolite catalyst," *J Colloid Interface Sci*, vol. 517, pp. 144–154, May 2018, doi: 10.1016/j.jcis.2018.01.113.
- [10] L. B. Pierella, C. Saux, S. C. Caglieri, H. R. Bertorello, and P. G. Bercoff, "Catalytic activity and magnetic properties of Co-ZSM-5 zeolites prepared by different methods," *Appl Catal A Gen*, vol. 347, no. 1, pp. 55–61, Sep. 2008, doi: 10.1016/j.apcata.2008.05.033.
- [11] F. Azzolina Jury, I. Polaert, L. B. Pierella, and L. Estel, "Optimized benzaldehyde production over a new Co-ZSM-11 catalyst: Reaction

parameters effects and kinetics," *Catal Commun*, vol. 46, pp. 6–10, Feb. 2014, doi: 10.1016/j.catcom.2013.11.020.

- [12] X. Guan, C. Duan, H. Wang, B. Lu, J. Zhao, and Q. Cai, "Tuneable oxidation of styrene to benzaldehyde and benzoic acid over Co/ZSM-5," *New Journal of Chemistry*, vol. 45, no. 38, pp. 18192–18201, Oct. 2021, doi: 10.1039/d1nj03145g.
- [13] R. R. Nath, C. Nethravathi, and M. Rajamathi, "Hierarchically porous, biphasic, and C-doped TiO2for solar photocatalytic degradation of dyes and selective oxidation of benzyl alcohol," ACS Omega, vol. 6, no. 18, pp. 12124–12132, 2021, doi: 10.1021/acsomega.1c00825.
- [14] Z. Topalian, B. I. Stefanov, C. G. Granqvist, and L. Österlund, "Adsorption and photo-oxidation of acetaldehyde on TiO2 and sulfate-modified TiO2: Studies by in situ FTIR spectroscopy and micro-kinetic modeling," *J Catal*, vol. 307, pp. 265–274, 2013, doi: 10.1016/j.jcat.2013.08.004.
- [15] L. A. Al-Hajji, A. A. Ismail, M. Alsaidi, S. A. Ahmed, F. Almutawa, and A. Bumajdad, "Comparison of TiO2 nanowires and TiO2 nanoparticles for photodegradation of resorcinol as endocrine model," *Journal of Nanoparticle Research*, vol. 22, no. 2, Jan. 2020, doi: 10.1007/s11051-020-4757-1.
- [16] X. Pan, Y. Zhao, S. Liu, C. L. Korzeniewski, S. Wang, and Z. Fan, "Comparing graphene-TiO 2 nanowire and graphene-TiO 2 nanoparticle composite photocatalysts," ACS Appl Mater Interfaces, vol. 4, no. 8, pp. 3944–3950, Aug. 2012, doi: 10.1021/am300772t.
- [17] G. Gohari *et al.*, "Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica," *Sci Rep*, vol. 10, no. 1, Dec. 2020, doi: 10.1038/s41598-020-57794-1.
- [18] J. Jitputti, Y. Suzuki, and S. Yoshikawa, "Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution," *Catal Commun*, vol. 9, no. 6, pp. 1265–1271, Mar. 2008, doi: 10.1016/j.catcom.2007.11.016.
- [19] S. Al-Taweel, H. Saud, S. S. Al-Taweel, and H. R. Saud, "New route for synthesis of pure anatase TiO2 nanoparticles via utrasoundassisted sol-gel method Analytical chemistry View project New route for synthesis of pure

anatase TiO 2 nanoparticles via utrasoundassisted sol-gel method," *Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research*, vol. 8, no. 2, pp. 620– 626, 2016, [Online]. Available: www.jocpr.com

- [20] Y. Wang and J. Zhang, "Ultrafine TiO2(B) nanowires for ultrahigh-rate lithium-ion batteries," *Ionics (Kiel)*, vol. 26, no. 3, pp. 1159– 1164, Mar. 2020, doi: 10.1007/s11581-019-03291-z.
- [21] L. S. Chougala, M. S. Yatnatti, R. K. Linganagoudar, R. R. Kamble, and J. S. Kadadevarmath, "A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells," *Journal* of Nano- and Electronic Physics, vol. 9, no. 4, 2017, doi: 10.21272/jnep.9(4).04005.
- [22] X. L. Zhang, Y. Chen, A. M. Cant, F. Huang, Y. B. Cheng, and R. Amal, "Crystalline TiO2 nanorod aggregates: Template-free fabrication and efficient light harvesting in dye-sensitized solar cell applications," *Particle and Particle Systems Characterization*, vol. 30, no. 9, pp. 754–758, Sep. 2013, doi: 10.1002/ppsc.201300132.
- [23] W. Feng, G. Wu, L. Li, and N. Guan, "Solventfree selective photocatalytic oxidation of benzyl alcohol over modified TiO2," *Green Chemistry*, vol. 13, no. 11, pp. 3265–3272, Jan. 2011, doi: 10.1039/c1gc15595d.
- [24] C. M. Strollo and P. J. Ziemann, "Investigation of the formation of benzoyl peroxide, benzoic anhydride, and other potential aerosol products from gas-phase reactions of benzoylperoxy radicals," *Atmos Environ*, vol. 130, pp. 202–210, Apr. 2016, doi: 10.1016/j.atmosenv.2016.01.011.
- [25] M. Sankar *et al.*, "The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol," *Nat Commun*, Feb. 2014, doi: 10.1038/ncomms4332. 321

Entry for the Table of Contents

Institute and/or researcher Twitter usernames: ((optional))